The response of turbulent flow to time-modulated forcing is studied by direct
numerical simulations of the Navier-Stokes equations. The large-scale forcing
is modulated via periodic energy input variations at frequency ω. The
response is maximal for frequencies in the range of the inverse of the large
eddy turnover time, confirming the mean-field predictions of von der Heydt,
Grossmann and Lohse (Phys. Rev. E 67, 046308 (2003)). In accordance with the
theory the response maximum shows only a small dependence on the Reynolds
number and is also quite insensitive to the particular flow-quantity that is
monitored, e.g., kinetic energy, dissipation-rate, or Taylor-Reynolds number.
At sufficiently high frequencies the amplitude of the kinetic energy response
decreases as 1/ω. For frequencies beyond the range of maximal response,
a significant change in phase-shift relative to the time-modulated forcing is
observed.Comment: submitted to Europhysics Letters (EPL), 8 pages, 8 Postscript
figures, uses epl.cl