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Molecular biomarkers for assessing 
the heat-adapted phenotype: a narrative 
scoping review
J. Corbett1*  , J. S. Young2, M. J. Tipton1, J. T. Costello1, T. B. Williams1, E. F. Walker3, B. J. Lee4 and C. E. Stevens1 

Abstract 

Heat acclimation/acclimatisation (HA) mitigates heat-related decrements in physical capacity and heat-illness risk 
and is a widely advocated countermeasure for individuals operating in hot environments. The efficacy of HA is typi-
cally quantified by assessing the thermo-physiological responses to a standard heat acclimation state test (i.e. 
physiological biomarkers), but this can be logistically challenging, time consuming, and expensive. A valid molecular 
biomarker of HA would enable evaluation of the heat-adapted state through the sampling and assessment of a bio-
logical medium. This narrative review examines candidate molecular biomarkers of HA, highlighting the poor sensitiv-
ity and specificity of these candidates and identifying the current lack of a single ‘standout’ biomarker. It concludes 
by considering the potential of multivariable approaches that provide information about a range of physiological sys-
tems, identifying a number of challenges that must be overcome to develop a valid molecular biomarker of the heat-
adapted state, and highlighting future research opportunities.
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Introduction
Humans are often required to operate and perform in 
hot and or humid environments. Compared to a cool 
environment, these conditions reduce physical work 
capacity [52], impair performance [69, 90] and increase 
the risk of heat-related illnesses [9]. Unfortunately, 
due to the warming effects of climate-change, expo-
sure to this type of environment is likely to increase in 
the future [41]. However, repeated frequent exposure to 

environmental conditions that are sufficient to elicit pro-
nounced thermo-physiological strain result in within-life 
phenotypic adaptations that improve an individual’s abil-
ity to maintain thermal homeostasis when subsequently 
exposed to a hot environment [38]. This process is 
termed heat acclimatisation when occurring in a natural 
environment and heat acclimation when undertaken in a 
controlled (laboratory) environment [84]. Heat acclima-
tisation/acclimation (HA) is an effective intervention for 
mitigating decrements in physical work capacity and per-
formance in the heat [16], and reducing the risk of heat-
related illnesses [183]. As such, HA is widely advocated 
for individuals operating in these conditions [160, 170].

The phenotypic adaptations to heat are commonly 
quantified by exposure to a standard exercise-heat stress, 
often termed a ‘heat acclimation state test’ (HAST) [169, 
211], where the physiological outputs (e.g. sweating rate, 
cutaneous blood flow) and disturbances (e.g. skin and 
deep body temperature) to a fixed thermal input (e.g. 
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ambient thermal stress and work rate) [164] are meas-
ured, with deep body temperature regarded as paramount 
due to its association with heat illness [9] (see Sect. “The 
heat-adapted phenotype” for more detailed discussion). 
However, quantification of these physiological indices 
requires carefully controlled environmental conditions 
(e.g. environmental chamber), work rate standardisation 
and specialist equipment, can be invasive (e.g. measure-
ment of deep body (rectal or oesophageal) temperature), 
may lack objectivity, and is typically based upon change 
scores (i.e. pre vs. post comparisons) rather than absolute 
values. Less-invasive deep body temperature measure-
ments (e.g. sub-lingual, axillary, tympanic) lack validity 
[136], whilst the utility of other non-invasive physiologi-
cal indices of heat adaption (e.g. cardiovascular indices) 
has only been evidenced under carefully standardised 
environmental conditions [49, 202]. Together these fac-
tors can negate the practical utility of implementing a 
HAST, particularly in contexts where large numbers of 
personnel may need to be evaluated on a short time scale 
and with significant logistical constraints (e.g. defence 
[160]) and limit the use of physiological indices of heat 
adaption (e.g. assessment of thermoeffector outputs and 
physiological disturbances) in circumstances where the 
input conditions are not strictly controlled.

A biomarker is ‘a defined characteristic that is meas-
ured as an indicator of normal biological processes, 
pathogenic processes or responses to an exposure or inter-
vention’ [45], p. 43). Biomarkers can be derived from 
histologic, radiographic, physiological, or molecular 
characteristics [21], with the latter having biophysical 
properties, which allow their measurements in biological 
samples such as plasma, urine or sweat [107]. Within the 
context of HA, a valid molecular biomarker may negate 
the need for a HAST, or reduce the technical require-
ments and reliance on the assessment of ‘hallmark” phys-
iological indices of adaption, i.e. physiological biomarkers 
[164, 165], and enable an evaluation of whether an indi-
vidual had acquired a heat-adapted phenotype through 
the sampling and assessment of a biological medium. 
Such a molecular biomarker may have important utility 
in circumstances where the assessment of physiological 
biomarkers is not viable, where reliable molecular mark-
ers of adaptation could not only provide assurance of the 
efficacy of HA, but also reduce heat illnesses and lead 
to more personalised approaches to adaptation [160]. 
Although, to date, such a molecular biomarker has not 
been identified, technological advances in non-invasive 
and minimally invasive biosensing [60, 158], low-cost 
easy-to-use analyte measurement approaches [88], con-
tinuous and remote monitoring wearable technology 
[184], and multi-molecule biomarker development [48], 

make identifying molecular biomarkers of heat adapta-
tion a timely research challenge.

We commence this narrative review by briefly review-
ing the thermo-physiological adaptations occurring with 
HA, including both the whole-body and cellular adapta-
tions that are the ‘hallmark’ physiological characteristics 
of the heat-adapted phenotype. We subsequently review 
the literature that has examined changes in a number 
of candidate biomarkers within the context of HA, with 
a focus on molecules implicated in aspects of the adap-
tive response to heat, including fluid regulation, energy 
homeostasis, and sympatho-adrenal balance, as well 
as indices of inflammation, sudomotor adaption and 
acquired thermal tolerance. We conclude by highlighting 
a number of challenges that future research will need to 
overcome in order to develop a valid biomarker of HA, 
as well as future research opportunities that may prove to 
be fruitful in the development of a biomarker of HA.

The heat‑adapted phenotype
The adaptations occurring with HA have been extensively 
described previously and the reader is guided to reviews 
by Périard et  al. [164, 165] for detailed descriptions. 
Briefly, repeated daily heat exposures of at least 60  min 
duration at an intensity sufficient to elevate deep body 
temperature and skin temperature to a level eliciting pro-
nounced sweating invokes a multi-system array of adap-
tions occurring over different time courses [53]. Within 4 
to 5 days a pronounced increase (> 5%) in plasma volume 
is observed (e.g. [14, 143, 185]), mainly underpinned by 
the fluid conserving effects of the hormones aldosterone 
and arginine-vasopressin (e.g. [2, 54, 140, 146]) as well as 
an oncotic effect from intravascular protein influx [162, 
185]. The resultant hypervolemia increases stroke volume 
and, possibly in conjunction with a reduction in sympa-
thetic nervous system excitability [81, 83, 192], results in 
a lowering of heart rate and improved cardiovascular sta-
bility [216].

An increased sweating rate can be detected from 
the second day of HA, but it is generally believed that 
> 10  days is required to obtain the complete changes in 
the sweating threshold and gain (sensitivity) and sweat 
electrolyte concentration that constitute ‘full’ sudomo-
tor adaptation [175, 210]. The threshold for cutane-
ous vasodilatation is also reduced [175], which enables 
greater internal heat transfer as a result of increased con-
vective heat transport from the ‘core’ to skin, whilst the 
sudomotor adaptations support increased wet-heat trans-
fer from the skin to the environment (under conditions 
permitting evaporation). There is also some evidence for 
a shift towards a more metabolically efficient phenotype, 
although these data are primarily derived from long-term 
HA studies of rodents [131, 132]. Nevertheless, although 
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it has been highlighted that the research is equivocal [29], 
a number of human studies employing typical HA dura-
tions (e.g. 7–14 days) have shown an improved metabolic 
efficiency during exercise following HA (e.g. [181, 188, 
224]), with some suggesting that the resultant reduction 
in metabolic heat production plays a substantial role in 
the lower thermal strain that is evident following an HA 
intervention [177].

HA also induces a range of cellular adaptions that con-
fer improved cytoprotection [139]. This acquired thermal 
tolerance (ATT) appears to share a common pathway 
with the systemic adaptations to HA that is mediated by 
heat shock proteins (HSP) [104], a conserved group of 
proteins that serve as molecular chaperones and accel-
erate cellular repair from heat stress, ischaemia and 
endotoxic shock [101, 108]. Compared to our under-
standing of the time course of the systemic adaptations 
to heat, understanding of the intracellular adaptations is 
relatively limited. Nevertheless, a recent meta-analysis 
suggests that the number of days of HA is a significant 
moderator of the intracellular HSP (iHSP) response 
[142]. This is exemplified by data from Marshall et  al. 
[122] who showed that iHSP levels in peripheral blood 
mononuclear cells (PBMCs) were unchanged following 
two consecutive daily 2-h bouts of exercise-heat stress, 
and Yamada et  al. [218] who reported elevated baseline 
iHSP levels from day 6 through to day 10 during a 10-day 
(100 min  day−1) HA program.

Together, the multi-systemic adaptations occurring 
with HA, including expanded plasma volume, reduced 
heart rate, and enhanced skin blood flow and sweating, 
result in a lower skin and deep body temperature and an 
improved perceptual response, and in conjunction with 
ATT, constitute the ‘hallmark indices’ of the heat-adapted 
phenotype [164, 165].

Candidate biomarkers
It is well established that acute exposure to a hot envi-
ronment that is sufficient to elevate thermal strain also 
elicits a pronounced neuroendocrine response [125]. 
Likewise, the role of the neuroendocrine system in the 
long-term adaptation to heat has long been recognised 
[27, 148], as has the multi-systemic nature of adaption 
to heat and the interconnection between the systems 
controlling thermoregulation and those regulating fluid 
balance (e.g. renin–angiotensin–aldosterone system), 
energy homeostasis (e.g. hypothalamic–pituitary–thy-
roid axis [200]) and sympatho-adrenal activity (e.g. 
sympathetic–adrenomedullary and hypothalamic–pitu-
itary–adrenal axis) [83]. Accordingly, the initial focus of 
this section is the evaluation of research that has meas-
ured the concentration of molecules that are associated 

with these physiological systems, or related processes, 
in response to HA. Given the notable thermoregulatory 
differences between species [225], we generally  con-
strain our review to literature examining changes in the 
concentration of relevant molecules in the biological 
samples of humans undertaking HA, and the consid-
eration of candidate biomarkers where there is a bio-
logically plausible rationale for their measurement. We 
subsequently extend the scope of our review to encom-
pass research that has examined changes in inflam-
matory biomarkers with HA, and the measurement of 
putative heat adaptation biomarkers in other biological 
mediums, including the measurement of intracellular 
heat shock proteins, as well as use of sweat biomarkers.

Fluid balance and regulation
Adaption to heat causes an array of phenotypic altera-
tions that improve the regulation of water and elec-
trolyte balance, including an increase in total body 
water and plasma volume expansion, and a reduction 
in electrolyte losses [22]. These adaptations are pri-
marily controlled by the action of the renin–angioten-
sin–aldosterone hormone system [8]. In response to a 
decreased perfusion of the juxtaglomerular apparatus 
in the kidneys, renin is released, which enables the 
conversion of angiotensinogen to angiotensin-I and 
subsequently to angiotensin-II by the action of angio-
tensin converting enzyme [8]. Angiotensin-II causes 
constriction of resistance vessels to elevate blood pres-
sure, reabsorption of sodium in the proximal tubules of 
the kidney, and the release of aldosterone by the adre-
nal gland and arginine-vasopressin (AVP) from the 
posterior pituitary gland; the latter is also released in 
response to hyperosmolality detected in the pre-optic 
anterior hypothalamus as well as in response to barore-
ceptor firing from hypovolemia [79, 207]. Aldosterone 
acts on the mineralocorticoid receptors in the distal 
tubule and collecting duct of nephrons in the kidney, 
directly impacting sodium absorption and potassium 
excretion, resulting in elevated plasma sodium and 
the osmotic retention of water in the blood, whereas 
AVP mainly acts on aquaporin channels in the kidney 
tubules increasing water reabsorption [79]. Plasma 
protein levels may also play a role in the expansion of 
plasma volume through an oncotic effect that may be 
mediated by the combined actions of the lymphatic 
system [155], increased albumin synthesis [221] and 
reduced total albumin losses [76], although this appears 
to be a supportive rather than dominant mechanism 
[162]. The potential utility of a range of a number of 
putative biomarkers associated with these processes is 
discussed below.
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Aldosterone
Although plasma aldosterone concentration increases 
may occur in response to intense exercise performed in 
temperate conditions [115], this effect is potentiated dur-
ing exercise in the heat [135] and with hypohydration 
[56]. When plasma aldosterone is measured following a 
standard exercise-heat exposure (i.e. HAST) the aldos-
terone concentration is often shown to be diminished 
following an HA intervention (e.g. [54, 61, 96, 146, 189, 
191]), likely as a result of increased sensitivity to the 
effects of aldosterone to changes in plasma osmolality 
[22]. However, this effect is no longer evident 1 week after 
HA [61] and the decline in plasma aldosterone during a 
post-HA HAST has not been observed in all studies (e.g. 
[10, 47, 100, 147]). Moreover, as detailed in Sect. “Intro-
duction”, the practical utility of undertaking a HAST may 
be limited in many contexts [160], and baseline changes 
in the concentration of fluid regulatory hormones are 
likely to be more relevant in terms of a viable candidate 
biomarker of HA.

A number of studies have shown a significant increase 
in the resting baseline concentration of plasma aldos-
terone following an HA intervention [54, 143, 146, 147]. 
This is exemplified by Nielsen et  al. [146] who demon-
strated that mean (SD) baseline plasma aldosterone con-
centration increased from 96.6 (12.8)  pg   mL−1 to 156.0 
(15.3) pg  mL−1 following 9–12 consecutive days exercise 
in dry heat (90 min  day−1), and Francesconi et al. [54] who 
demonstrated a significant increase in baseline plasma 
aldosterone concentration from ~ 12 to 17  ng   dL−1 fol-
lowing a 10-day HA intervention (100  min   day−1) in a 
combination of hot-dry and hot-wet environments. This 
effect of HA on baseline aldosterone does not appear to 
be significantly affected by the superimposition of modest 
dehydration (average daily body mass loss − 2.71 kg) dur-
ing the HA regime [143], but may be affected by the level 
of dietary sodium, with high dietary sodium consump-
tion associated with an abolished aldosterone response 
and low dietary sodium associated with a potentiated 
aldosterone response [2]. However, it is important to 
note that some studies have shown unchanged (e.g. [10, 
47, 61, 96, 100, 189, 191]) or even reduced [161] baseline 
plasma aldosterone concentration with HA. It has been 
speculated that these apparently divergent findings may 
be related to differences in sodium balance, as well as 
different experimental models, including the mode and 
method of HA and training status of the participants 
[22], seasonal effects on aldosterone levels have also been 
reported [47, 94], whereas the extent to which systemic 
aldosterone concentration reflects the concentration at 
the renal mineralocorticoid receptors is unclear. Never-
theless, a recent meta-analysis concluded that, although 
there was high inter-investigation variability, there was a 

small significant increase (+ 25 ± 35%) in baseline plasma 
aldosterone concentrations following HA [205]. However, 
at present there is a paucity of data examining the time 
course of changes in resting aldosterone concentration 
with sufficient resolution over the induction and decay 
of HA  and an increased understanding of the temporal 
relationship between plasma aldosterone and the plasma 
volume changes occurring with HA will be necessary to 
establish the utility of aldosterone as a HA biomarker.

Arginine vasopressin
It is generally accepted that, similar to plasma aldoster-
one concentration, plasma AVP concentration is acutely 
increased during intense exercise [79], but during exer-
cise in the heat significant increases in plasma AVP are 
observed at lower work rates [64]. There is some evidence 
that the magnitude of increase in plasma AVP during 
exercise in the heat is diminished following HA [64, 146], 
although conversely, others studies have suggested that 
the increase in AVP might be larger following HA [147]. 
Similarly, Mudambo et al. [140] demonstrated that rest-
ing baseline plasma AVP levels were significantly elevated 
(+ 61%, P < 0.001) in 24 soldiers following 30 days of field-
based HA, but interventions of this duration are uncom-
mon and this finding appears to be in the minority, with 
the majority of studies suggest that baseline plasma AVP 
levels are unchanged following an HA intervention (e.g. 
[61, 64, 146, 147, 161]). Overall, these data are consist-
ent with a recent meta-analysis, which concluded that 
there was no effect of HA (− 5 ± 15%) on resting plasma 
AVP concentration [205]. Nevertheless, this conclusion, 
as well as the apparently conflicting findings from dif-
ferent studies may, at least in part, be a consequence of 
the short half-life of AVP (< 30 min), whilst the fact that 
AVP is unstable, even in isolated plasma [190], combined 
with its small size, means it cannot be measured by sand-
wich immunoassay, but only by less sensitive competitive 
immunoassays [137].

Copeptin
Given the challenges posed by plasma AVP measure-
ment there has been a growing interest in the poten-
tial of surrogate measures of AVP concentration [190]. 
Copeptin is a 39-amino acid glycopeptide that forms the 
c-terminal part of the AVP precursor protein preprov-
asopressin [137]. It is released in an equimolar fashion 
with  AVP  from magno- and parvo-cellular neurons of 
the  hypothalamus and parallels the increase in AVP in 
response to alterations in tonicity and blood pressure 
[25]. However, in contrast to AVP, copeptin has a longer 
half-life [15], is stable in serum or plasma for days [137] 
and is less technically challenging to assay [25]. Together 
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these factors may overcome some of the issues associated 
with the measurement of AVP.

Stacey et al. [190] examined the plasma copeptin con-
centrations in humans in response to thermal stress, 
demonstrating a significant rise in copeptin [10.0 (6.3) vs. 
16.7 (9.6) pmol   L−1, P < 0.001] among a group of 15 sol-
diers undertaking a 3.5  h simulated combat assault in a 
hot environment (27 °C), as well as evidence of a thresh-
old effect, indicated by a negligible copeptin increase in 
individuals who did not exceed a deep body tempera-
ture of 38  °C. Moreover, the post-assault copeptin con-
centration was strongly related to the plasma osmolality 
(r = 0.70, P < 0.01), as well as the accumulated thermal 
stress (area under the curve for a deep body temperature 
> 37  °C; r = 0.78,  P < 0.01). In a subsequent study, Stacey 
et al. [191] measured copeptin in a group of 23 soldiers 
over a 23-day natural HA intervention and demonstrated 
that neither the resting baseline, nor post-HAST, copep-
tin concentration changed over the HA period, although 
there was a rightward shift in the serum osmolality–
copeptin relationship following HA. In a study by the 
same group, Omassoli et  al. [156] again demonstrated 
that baseline copeptin was unchanged over the course 
of the 23-day HA intervention—a finding that has since 
been corroborated by another research group [152] 
employing a prolonged HA intervention (~ 28 × 60  min 
exercise-heat stress exposures over 5.5 weeks). However, 
in contrast to their previous study, Omassoli et al. [156] 
also reported that the post-HAST copeptin concentra-
tion was reduced over the course of the HA interven-
tion, but their analyses do not clarify when the reduction 
in copeptin became significant, although the nadir value 
occurred on day 9 of the 23-day HA intervention.

At present, the reason for these discrepant find-
ings are unclear, particularly given the commonalities 
between the studies. Moreover, plasma copeptin con-
centration appears to be affected by a number of non-
thermal stimuli and disease conditions [137] and may 
therefore lack sufficient sensitivity and specificity to 
be utilised as a biomarker of HA. Thus, at present, the 
available research does not support the measurement 
of resting plasma copeptin concentration as a viable 
biomarker of HA, although there may be some util-
ity if plasma copeptin is assessed following a standard 
HAST. Further research is needed to reconcile discrep-
ancies between the limited number of available stud-
ies and to examine plasma copeptin levels over more 
common HA durations (e.g. 8–10  days; [205]) than 
those that have been studied to date (e.g. 23–30  days; 
[152, 156, 189, 191]). In addition, future studies meas-
uring copeptin concentration should consider the fact 
that, while the longer half-life relative to AVP provides 

greater measurement stability [15], this could result in 
a temporal dissociation between these molecules in sit-
uations eliciting rapid changes in AVP concentration.

Renin
An increase in plasma renin concentration has fre-
quently been demonstrated following exercise-heat 
stress [10, 33, 47, 54, 146, 147], with some evidence 
that the magnitude of increase in plasma renin may be 
attenuated following HA [47, 146] and that this effect 
may be greater than for other fluid regulatory hor-
mones such as aldosterone [54], but this has not been 
shown to occur consistently [10, 33, 64, 146]. The rea-
sons for these equivocal findings are not immediately 
clear, although Francesconi et al. [54] reported a more 
pronounced attenuation of the increase in plasma renin 
levels following HA when HASTs were performed in 
the hypohydrated state, compared to the euhydrated 
state, which was attributed to the combined effects 
of expanded plasma volume, attenuated renal vaso-
constriction and a decreased sympathetic response 
to exercise-heat stress when heat adapted. Therefore, 
as has been described for other hormones involved in 
fluid regulation [140], variations in hydration levels 
may affect the influence of HA on renin levels during a 
HAST, with effects generally appearing to be more pro-
nounced when hypohydration is superimposed on the 
exercise-heat stress.

Based upon the data of Finberg and Berlyne [47], 
Davies et  al. [33], Armstrong et  al. [10] and Nielsen 
et al. [146] a recent narrative review concluded that the 
baseline plasma renin concentration is unaffected by 
HA [22]. However, the data from Finberg and Berlyne 
[47], which demonstrated a small but statistically signif-
icant reduction in resting plasma renin concentration 
following a 7-day HA intervention, may have been mis-
interpreted. Similarly, data from Nielsen et  al. [147], 
which claimed to show an increase in resting renin con-
centration with an 8 to 13-day HA regime consisting of 
daily exercise to exhaustion in hot-humid conditions, 
were not included in this review, although within this 
study there appears to be discrepancy between the text 
conclusion and the data presented.

Therefore, the data are again somewhat equivocal for 
the effect of HA on resting and post-HA HAST plasma 
renin concentration. Whilst protocol differences may 
influence these findings, it is worth noting that in a num-
ber of the studies demonstrating a null effect (e.g. [33, 
146]), data were obtained from a limited number (≤ 6) 
of participants, which will have resulted in low statistical 
power and an increased likelihood of Type II error.
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Atrial natriuretic peptide and related hormones
Atrial natriuretic peptide (ANP) is a small peptide that is 
secreted by the atria of the heart as result of atrial disten-
sion due to a high systemic blood pressure. ANP coun-
teracts some of the effects of aldosterone, decreasing 
reabsorption of sodium from the inner medullary col-
lecting duct and increasing urinary sodium excretion, as 
well as increasing vascular protein efflux through effects 
on capillary permeability [214], resulting in a decreased 
plasma volume [31]. Pro-ANP is the precursor to ANP, 
whereas brain natriuretic peptide (BNP) is excreted by 
the ventricular cardiomyocytes and exerts similar effects 
to ANP, but has a longer half-life and lower receptor bid-
ing affinity [141, 197], with both binding to natriuretic 
peptide receptor A to induce cyclic guanylyl monophos-
phate as a second messenger in the target cells [214]. 
Despite their role in fluid regulation, to date, very few 
studies have examined changes in plasma ANP, pro-ANP, 
and BNP levels following HA in humans. Mudambo 
et al. [140] demonstrated a small, statistically significant, 
reduction in resting plasma ANP concentration follow-
ing HA, whereas plasma BNP was unchanged although, 
as mentioned previously, this study employed an atypical 
duration of HA (30 days c.f. 8–10 days) and was under-
taken in a field setting. In contrast, Kraemer et al. [100] 
reported no changes in baseline plasma ANP over an 
8-day HA intervention, and Patterson [161] reported 
no statistically significant difference in resting baseline 
plasma ANP among 12 individuals after either 8 days or 
22 days of an HA intervention, with a numerical increase 
of 32% apparent on day 22, which might be reflective of 
the sustained hypervolemia induced by their experimen-
tal model [162]. Again, these divergent findings likely 
stem from differences in the types of HA intervention in 
these studies, which include natural and laboratory HA, 
different thermal forcing functions (e.g. controlled hyper-
thermia, fixed work rate) and various durations, amounts 
of exercise, and dietary and hydration conditions. Pro-
ANP does not appear to be affected by HA [152], but has 
received limited attention in the context of HA.

Other fluid regulatory molecules
Other molecules that are involved in the control of fluid 
balance and may play a role in the adaptive responses seen 
with exposure to heat have received relatively little atten-
tion; we are unaware of any research that has examined 
the effects of HA on the resting plasma concentrations 
of angiotensinogen, angiotensin-I and angiotensin-II in 
humans. Changes in the plasma concentrations of these 
molecules have been documented during acute exposure 
to heat [99], but cross-sectional observational research 
suggests that there does not appear to be a seasonal effect 
on baseline angiotensin-II, even when these is some 

evidence of acclimatisation [94]. Nevertheless, given the 
involvement of these molecules in the fluid-regulatory 
pathways that are linked to aspects of the heat-adapted 
phenotype, future investigation of these molecules may 
prove fruitful in the context of a biomarker of the heat-
adapted state, although their utility could be limited by 
extremely short circulating half-lives [3, 80] and suscepti-
bility to changes in hydration state [168].

Markers of kidney function and kidney injury
Heat stress represents a profound challenge to kidney 
function and can increase the risk of acute kidney injury 
(AKI) [182], which is augmented with increasing ther-
mal strain and dehydration [23]. A number of recent 
studies have examined the effects of HA interventions 
on biomarkers of kidney function and AKI to estab-
lish if there is protective adaptation of the kidney with 
repeated heat exposure; biomarkers evidencing such an 
effect may have utility in identifying the heat-adapted 
phenotype. Based upon increases in serum creatinine 
and reductions in estimated glomerular filtration rate 
(calculated from serum creatinine concentration), Pryor 
et al. [167] reported that 75% of individuals undertaking 
2  h of exercise in the heat exceeded the clinical thresh-
old for AKI before a 4-day HA intervention, with only 
58% of individuals meeting this threshold after the HA 
intervention. However, neither the mean baseline nor 
the mean post-exercise serum creatinine concentration 
were significantly altered by the HA intervention. Simi-
larly, Omassoli et  al. [156] reported a reduction in the 
number of individuals attaining serum creatinine levels 
exceeding the threshold for clinical AKI from 14/20 to 
1/20 individuals following 23  days of HA. However, in 
contrast to Pryor et al. [167], a reduction in mean serum 
creatinine was also reported following a standard HAST, 
although baseline serum creatinine was unchanged. In 
a subsequent study, Ravanelli et  al. [171] reported that 
neither glomerular filtration rate (calculated as the prod-
uct of urine creatinine concentration and urine flow 
rate divided by serum creatinine concentration) nor its 
constituent analytes were altered by a 7-day passive HA 
intervention.

More recent research examining the effects of HA on 
AKI [73] has assessed the urine concentrations of neutro-
phil gelatinase-associated lipocalin (NGAL), a biomarker 
of renal tubular damage [133] and urinary kidney injury 
molecule-1 (KIM-1), a transmembrane glycoprotein that 
indicates proximal tubule injury [72]. This research indi-
cated that urinary NGAL was unaffected by a HAST and 
did not differ pre- to post-HA, whereas KIM-1 was ele-
vated following the HAST, but to a similar extent before 
and after HA, with no change in baseline concentration 
[73]. Thus, whilst there is some limited evidence that HA 
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may reduce the achievement of serum creatinine levels 
associated with AKI during a HAST, and that longer HA 
interventions may lower the post-HAST serum creati-
nine concentration, other biomarkers of AKI (e.g. NGAL, 
KIM-1) appear unaffected by HA. Moreover, none of 
these biomarkers of kidney of AKI have shown baseline 
changes following HA, indicating that they may have 
limited utility in the assessment of the heat-adapted phe-
notype. Finally, it is important to note that, to date, no 
studies examining the effect of HA on AKI have assessed 
urine concentrations of insulin-like growth factor bind-
ing protein 7 (IGFBP7) and tissue inhibitor of metal-
loproteinase 2 (TIMP-2), which appear to outperform 
other biomarkers of AKI in clinical settings [95]; these 
biomarkers should be considered in future research 
examining renal adaptions to HA.

Haematological indices associated with altered fluid balance
The hypervolemia that is a characteristic of the fluid 
shifts occurring with the heat-adapted phenotype typi-
cally results in a pronounced haemodilution, leading to 
a reduction in both the blood haematocrit (volume per-
centage of red blood cells in blood) and blood haemo-
globin concentration [17, 74]. Because this hypervolemia 
is partly driven by an oncotic effect, to which albumin is 
the biggest contributor [180, 185], the expanded intra-
vascular volume is also often associated with an increase 
in the plasma protein and plasma albumin content [162, 
185]. This effect may become evident after 2  days of 
HA [185] and has been shown to persist for as long as 
22 days when a controlled hyperthermia HA regime is 
used [162]. Although some studies have not reported an 
increase in plasma protein content with HA (e.g. [17]), 
this may be due to differences in the method of expres-
sion, with changes in total protein content typically more 
pronounced than changes in protein concentration [162], 
presumably because the latter acts as the stimulus for 
the plasma volume expansion. As a consequence, these 
simple haematological parameters may have some util-
ity in identification of the heat-adapted state, but their 
time course of acquisition may precede the development 
of other aspects of this phenotype such as sudomotor 
changes [164]. Moreover, whilst within-individual reduc-
tions in haematocrit and haemoglobin concentration are 
consistently observed following an HA intervention [17], 
there is pronounced inter-individual variability in the 
baseline haematocrit and haemoglobin, which may be 
related to a range of physiological (e.g. sex [20]; training 
status [145], genetics [119]), environmental (e.g. hypoxic 
exposure[114]) and nutritional factors (e.g. hydration 
[26], protein and carbohydrate consumption [154]).

Similarly, recent research has shown that a prolonged 
HA regimen (5.5  weeks) can result in an increased 

haemoglobin mass [152], although this does not appear 
to be the case with shorter HA regimens [172], and the 
effects of HA on erythropoietin levels are equivocal [152, 
172]. Moreover, plasma albumin and protein levels can 
increase with training intensification, independent of HA 
[152], and may be altered by dietary protein consump-
tion [67]. Each of these factors could adversely impact 
on the utility of these simple haematological indices as 
a biomarker of HA and suggests that, in isolation, these 
measures may not be appropriate, but they may provide 
valuable information in situations where it is possible to 
control for the aforementioned potential confounders.

Energy homeostasis
Although the role of energy homeostasis in thermoregu-
lation is well accepted [200], it has mainly been studied 
within the context of exposure to cold, and in the con-
trol of the production of additional heat via the influence 
of hypothalamic-pituitary-thyroid axis on the metabolic 
processes that constitute facultative (non-shivering) ther-
mogenesis [195]. Similarly, the role of the prostaglan-
din–cyclooxygenase system is well established in febrile 
temperature regulation [86] and has recently received 
some attention in the context of exposure to cold [43, 50]. 
However, there is some evidence suggesting that these 
processes may also play a role in the adaptive processes 
to chronic heat exposure and as such may be suitable 
for further investigation in the context identifying a bio-
marker of the head adapted phenotype.

Thyroid hormones
Thyroid hormones play a central role in the control of 
heat generation from biological processes that are inher-
ent to homeothermic species, including humans [87, 
195]. The circulating levels of the thyroid hormones trii-
odothyronine (T3) and thyroxine (T4) are regulated by 
the hypothalamic–pituitary–thyroid axis. In response to 
low T3 and T4 levels the hypothalamus releases thyro-
tropin-releasing hormone (TRH), which stimulates the 
release of thyroid stimulating hormone (TSH) from the 
anterior pituitary. This results in the secretion of thyroid 
hormones from the thyroid gland (primarily T4) and the 
further production of the more potent T3 through the 
action of deiodinase on T4 in peripheral organs, includ-
ing the liver. T3 and T4 are both active in their ‘free’ state 
(i.e. unbound to thyroxine-binding globulin, transthyre-
tin, or albumin), and inhibit TRH and TSH, thus creating 
a negative feedback loop which regulates circulating lev-
els [187]. T3 and T4 have multifarious effects including 
on development [130] and cardiovascular function [44], 
as well as on body temperature regulation [194], the latter 
appears to be mainly related to effects on metabolic rate 
and non-shivering thermogenesis [87, 195]. Nevertheless, 
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more than 50  years ago Weiner and Collins [27] sug-
gested that ‘a reduction in thyroid activity in hot condi-
tions might play a part in maintaining thermal balance 
by bringing about a slowing in metabolism and heat out-
put.’ (p. 790). Subsequent animal research demonstrated 
that rats treated with propylthiouracil to lower circulat-
ing T3 and T4 have a lower deep body temperature at 
rest and during heat stress [219], and that after a 4-week 
heat acclimation intervention blood T3 and T4 lev-
els were spontaneously reduced in rodents [132]. These 
changes in thyroid hormone levels appeared to be caus-
ally related to the development of a more metabolically 
efficient phenotype during HA, as determined through 
measurements of cardiac mechanics, with the adapta-
tions blunted when propylthiouracil was administered 
to maintain a euthyroid state throughout the HA [131], 
although it remains to be established if the improved 
metabolic efficiency reported after some human HA 
studies (e.g. [181, 188, 224]) is related to the action of 
thyroid hormones.

In humans, cross-sectional analysis of a large data-set 
of deep-body temperature measurements demonstrated 
a linear relationship between TSH levels and resting 
deep-body temperature [153]. A recent meta-analysis of 
studies in healthy euthyroid adults evidenced significant 
seasonal variation in thyroid hormones, including lower 
circulating TSH and T3 levels during the summer com-
pared to the winter [105]. Beyond these cross-sectional 
observational studies, a limited number of studies have 
measured thyroid hormone levels in humans over the 
course of a HA regimen. An early study conducted by 
Sridharan et  al. [196] reported a reduction in resting 
plasma T3 and T4 after 4, 2-h daily heat exposures (45 °C, 
30% R.H.), accompanied by a reduction in tympanic 
temperature and increased sweating rate, with further 
reductions in plasma T3 evident after the 8  day of heat 
exposure. More recently, in an unpublished study, McIn-
tyre [128] demonstrated that the change in resting plasma 
total T4 after a 6-day HA was related to the magnitude 
of the accumulated endogenous thermal ‘dose’ (total 
area under the curve for rectal temperature > 38.5  °C, 
r =  −  0.32, P = 0.021), with a larger endogenous thermal 
dose resulting in a greater reduction in plasma total T4. 
In a subsequent study examining two different 12-day 
HA regimens, the same group demonstrated a significant 
reduction (P = 0.006) in resting plasma free T3 following 
a 12-day hot water immersion HA regimen [129], but no 
significant change in plasma T4 levels. Interestingly, in 
unpublished data from this group [128], it appears that 
the plasma free T3 level was related to the reduction in 
resting rectal temperature (r = 0.47, P = 0.044), as well 
as the endogenous thermal dose accumulated during a 
12-day HA regimen (r = − 0.57, P = 0.017).

Whilst these data suggest that the measurement of 
thyroid hormones may have utility in the assessment of 
heat-adapted phenotype, some caution is warranted. For 
instance, McIntyre [128] noted that the reduction in rec-
tal temperature preceded the change in thyroid hormone 
levels during HA, indicating that either the thyroid hor-
mones were not causally linked to the reduction in deep 
body temperature, or that they are only mechanistically 
relevant for the longer-term adaptive response. Moreo-
ver, circulating plasma T3 may be reduced after a single 
heat exposure [42], raising the possibility that measure-
ments made in close proximity to an acute heat expo-
sure could be similar to those found in the resting state 
following chronic heat exposure, but without incurring 
the adaptive benefits. There is also some evidence of sex 
differences in the thyroid hormone responses to a ther-
mal stimulus [105], whilst non-thermal factors including 
calorific restriction [37], stress [78] and disease [89] also 
affect thyroid hormone levels and may therefore impact 
on their utility as a biomarker of heat adaptation.

The prostaglandin–cyclooxygenase system
Prostaglandins are potent bioactive lipid messengers 
belonging to the eicosanoids, a family of oxygenated 20 
carbon fatty acids [111, 159]. There are four principal 
bioactive prostaglandins generated in  vivo: prostacyc-
lin  (PGI2), prostaglandin  D2  (PGD2) prostaglandin  E2 
 (PGE2) and prostaglandin F2α (PGF2α) [174] with  PGE2 
the most common [111]. Prostaglandins are synthesised 
from arachidonic acid in most mammalian tissues via the 
actions of prostaglandin synthases and two cyclooxyge-
nase (COX) isoenzymes: COX-1, which preferentially 
oxygenates exogenous arachidonic acid and is responsible 
for regulating baseline prostaglandin levels and mediates 
a range of ‘housekeeping’ functions, such as gastric epi-
thelial cytoprotection and homeostasis [174]; and COX-2 
which acts on endogenously produced arachidonic acid 
and controls prostaglandin synthesis in response to 
inflammation [159].

PGE2 is a principal pyrogenic mediator of the eleva-
tion in core temperature occurring with fever [86]. The 
upregulation of  PGE2 during fever is functionally cou-
pled to the inducible COX-2 isoform [178] with the first 
febrile-phase initiated by  PGE2 originating in peripheral 
tissues and the subsequent phase caused by the binding 
of  PGE2 to a specific EP3 receptor in the median pre-
optic area to affect hypothalamic neurons that regulate 
thermoregulation. Although the role of this pathway 
in non-febrile temperature regulation is less well estab-
lished, COX-2 gene deficient mice are unable to effec-
tively defend their deep body temperature during cold 
exposure [116]. Research in humans has shown a ther-
mogenic response of the COX-2/PGE2 pathways during 
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acute (120 min) cold exposure in humans and a relation-
ship between rectal temperature and  PGE2 during acute 
exposure to cold and thermoneutral conditions, although 
no effects were evident during acute exposure to hot 
(40  °C; 40% R.H.) conditions [43]. Similarly, administra-
tion of acetaminophen, a COX enzyme inhibitor, reduced 
core temperature of humans during an acute (120  min) 
passive exposure to 20 °C, 40% R.H [51] as well as during 
running [19] and cycling [126] exercise in the heat (30 °C, 
50% R.H.); this latter finding has been challenged [28], 
whilst studies that have used forearm dermal microdial-
ysis of COX inhibitors indicate that both COX isoforms 
may be involved in sudomotor regulation in the heat [58], 
although in contrast to studies of oral COX inhibitors 
(which may influence central and peripheral thermoreg-
ulatory mechanisms), microdialysis administration will 
only exert peripheral effects.

Given the purported role of COX/PGE2 pathway on 
temperature regulation it is surprising that, as far as 
we are aware, only one study has examined these mol-
ecules in humans undertaking HA. Shin et  al. [198] 
demonstrated that both serum  PGE2 and COX-2 were 
significantly reduced (− 18.5% and − 17.3%, respectively) 
following a 3-week HA intervention, with both of these 
molecules explaining a significant proportion of the vari-
ance in mean body temperature  (PGE2 r2 = 0.495; COX-2 
r2 = 0.369). Interestingly, the concentration of serum 
orexin, a neuropeptide that is produced in the hypothala-
mus [34], was also reduced (− 17.7%) and was also related 
to the variance in mean body temperature (r2 = 0.382). 
Orexin serves a number of functions, including regu-
lating sleep and wake states, feeding behaviour, reward 
systems, mood and cognition [24], with evidence from 
animal studies indicating that orexin is also implicated 
in the regulation of body temperature at rest [134, 223] 
and during exercise [123]. However, whilst the findings 
of Shin et al. [198] are promising, it has been noted that 
this study did not adjust for the plasma volume changes 
occurring with HA and should therefore be interpreted 
cautiously [43]. Moreover, they are based on a limited 
sample size (n = 9), and an atypical HA regime consist-
ing of 10 bouts of 30-min hot water immersion over a 
3-week period, as well as deep and mean body temper-
ature calculation from tympanic measurement which 
is of questionable validity (e.g. [1]). Therefore, although 
this HA regime was apparently effective at inducing hall-
mark induced of heat adaption (reduced deep body tem-
perature and increasing sweating), it remains to be seen 
if these molecules demonstrate the same responses over 
more traditional HA regimens in air, when deep body 
temperature is assessed using gold standard method (e.g. 
rectal or oesophageal), and when plasma volume changes 
are accounted for.

Sympathetic–adrenomedullary and hypothalamic–
pituitary–adrenal axis
Evidence from HA studies suggests that the activity 
of the sympathetic–adrenomedullary (SAM) axis [46, 
81, 118, 146, 156] and hypothalamic–pituitary–adre-
nal (HPA) axis [156, 192, 206, 208] may be altered in 
the heat-adapted state. The SAM and HPA axis work 
in coordination to regulate the ‘stress response’ over 
acute and chronic time scales [62, 204]. The process-
ing of physiological stress signals by the brainstem and 
hypothalamus activates the neurocircuitry generating 
the SAM axis response, which is regarded as the most 
rapidly responding system of the stress response [62]. 
SAM activity is mainly mediated by the secretion of the 
catecholamines adrenaline and noradrenaline from the 
adrenal medulla and the release of noradrenaline from 
the sympathetic nerves [62], which initiates a range of 
physiological responses to prepare the body to respond 
to the stressor [204]. In contrast to the SAM axis, the 
HPA axis is a hormone system, which results in activa-
tion over a slower timescale than the SAM axis, but with 
more protracted effects [179]. Activation of the HPA axis 
is elicited by the paraventricular nucleus of the hypo-
thalamus, which releases corticotropin-releasing hor-
mone, and the arcuate nucleus which secretes growth 
hormone releasing hormone. Together this stimulates 
the secretion of adrenocorticotropic hormone  and 
growth hormone from the anterior pituitary gland [7, 
204]; AVP can also act synergistically with corticotro-
pin-releasing hormone to stimulate adrenocorticotropic 
hormone  secretion [106]. Thereafter, growth hormone 
binds to the growth hormone receptor and activates mul-
tiple downstream  intracellular signalling  cascades [7], 
whereas adrenocorticotropic hormone binds to receptors 
in the adrenal cortex of the adrenal gland, resulting in the 
release of the glucocorticoid hormone cortisol, which is 
the end hormonal product of the HPA axis [62, 204] and 
elicits a range of metabolic and immune functions that 
support the bodies response to stress [204].

Catecholamines
Sympathetic nervous system activity is implicated in 
thermoregulation during heat stress [150] and a change 
in SAM axis activity, typified by a reduction in sympa-
thetic activity [81] and possibly increased parasympa-
thetic activity [49], is characteristic of the heat-adapted 
state. Catecholamines have commonly been employed 
as molecular biomarkers of SAM axis activity [63, 68] 
and it appears that, compared to exercise in cool condi-
tions, exercise in the heat results in an acute elevation in 
plasma catecholamine levels [46], with some evidence 
that this increase may become attenuated following 
HA [46, 81, 146, 166]. For example, Nielsen et  al. [146] 
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reported a significant increase in plasma adrenaline and 
noradrenaline concentrations during HASTs undertaken 
before and after 9–12 days of 90-min daily exercise-heat 
stress, with the concentration of both catecholamines 
reduced after 30 min of exercise in the post-HA HAST. 
Subsequent research has examined the time course of the 
reduction in plasma noradrenaline concentration follow-
ing daily 90-min bouts of walking at 40% of maximal oxy-
gen uptake in the heat, with the post-exercise reduction 
in noradrenaline becoming evident from the third day 
onwards and paralleling the time course of reductions 
in exercise heart rate [81]. Similarly, Febbraio et al. [46] 
reported that the plasma adrenaline concentration was 
reduced at the end of a 40-min HAST following a 7-day 
HA intervention, although noradrenaline levels during 
the HAST were not changed, whereas Nielsen et al. [147] 
reported no change in either plasma catecholamine fol-
lowing HA, although this study utilised an exercise to 
exhaustion HAST which lasted longer post-HA and may 
have masked any effects on catecholamine concentration. 
However, none of the aforementioned studies reported 
changes in the resting baseline concentrations of either 
plasma catecholamine.

Given the short circulating half-life of 1–2  min, as 
well as the influence of postural changes and the stress 
of venepuncture on plasma catecholamines [163], urine 
catecholamine measurements may be preferable in some 
situations, but they are influenced by the duration over 
which samples are obtained [68, 163] and do not offer 
the same temporal resolution as plasma measurements. 
Studies measuring urine catecholamine concentra-
tions over the course of HA have reported conflicting 
results. Using an 8-day HA intervention consisting of 
90  min   day−1 of exercise-heat stress, Maher et  al. [118] 
demonstrated that urinary noradrenaline excretion, 
assessed from samples collected from the onset of exer-
cise to 1 h after exercise completion, was reduced during 
the last 3 days of the HA intervention, compared to the 
first 3 days. In contrast, Leppäluoto et  al. [112] demon-
strated no effect on resting urine adrenaline concentra-
tion (collected from 20:00 to 0800), but a slight increase 
in resting urine noradrenaline in participants exposed to 
dry heat (in a Finnish sauna; 80 °C) for 1 h, twice a day, 
for 7 days. The reasons for these conflicting findings are 
unclear, but should be interpreted cautiously given that 
potential analytical challenges have been identified in the 
assessment of urine catecholamines [68], the differences 
in temporal resolution for the urine samples between the 
studies, as well as notable protocol differences (e.g. active 
vs passive HA). In addition, Leppäluoto et al. [112] noted 
high individual variation in their data, and changes to 
fluid consumption practice mid-way through their study 
may have confounded their data.

Nephrines
Given the reported challenges with plasma and urine 
catecholamine measurement it has been suggested that 
metanephrine and normetanephrine, the o-methylated 
extra neuronal metabolites of adrenaline and noradren-
aline, respectively, may offer appropriate alternatives 
for the measurement of sympatho-adrenal activity [39], 
overcoming many of the limitations associated with 
catecholamine measurement [163]. Plasma nephrine 
measures are more stable than those of the catechola-
mines [36] and demonstrate good correlation with both 
the plasma concentration and urinary excretion of their 
parent compounds [176]. However, to date, only a small 
number of research studies, from the same research 
group, have examined the concentration of plasma 
nephrines in response to HA. In a published abstract, 
Stacey et al. [189] reported that the post-HAST concen-
trations of plasma normetanephrine and metanephrine 
were both significantly reduced (P < 0.0001) following 
a 23-day natural HA (plasma normetanephrine: 948 
(328) vs 461 (132) pmol   L−1; plasma metanephrine: 
302 (103) vs 230 (91) pmol   L−1). Moreover, both the Δ 
normetanephrine and Δ metanephrine were correlated 
with the reduction in physiological strain index (calcu-
lated from deep body temperature and heart rate) over 
the HA period, which was interpreted as evidencing 
reduced sympathetic activation and led the authors to 
conclude that plasma nephrines could have utility as 
a biomarker of heat tolerance. In a subsequent study, 
Stacey et  al. [192] demonstrated that the plasma free 
normetanephrine concentration was increased during a 
HAST, with the increase attenuated on day 6 and 23 of 
the intervention (but not on day 9) which, in conjunc-
tion with heart rate variability analyses, was interpreted 
as indicating a transition towards diminished sympa-
thetic activity. In contrast, plasma free metanephrine 
did not increase over each HAST, although a significant 
main effect of HAST day was reported, but the location 
of this effect was not identified. Most recently, Omassoli 
et  al. [156] reported significant main effects for both 
baseline and post-HAST free plasma metanephrine 
concentration over a 23-day HA, again, the locations of 
any effects were not reported, but the numerical nadir 
for the resting baseline free plasma metanephrine con-
centration occurred on day 2, whereas the post-HAST 
value declined progressively, reaching a nadir on day 
23. However, it is important to note that there is high 
similarly between the methods of Stacey et  al. [189], 
Stacey et al. [192] and Omassoli et al. [156], and these 
studies may be reporting data from the same partici-
pant pool, with possible overlap between the studies.
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Cortisol
In addition to the measurement of plasma nephrines, 
Stacey et al. [189], Stacey et al. [192] and Omassoli et al. 
[156] each reported reductions in the post-HAST plasma 
cortisol levels over the course of their HA regimen, with 
Stacey et  al. [192] indicating that this effect was signifi-
cant from day 6 onwards and Stacey et al. [189] report-
ing a relationship between the Δ cortisol (r = 0.62) and 
the reduction in physiological strain index over the HA 
regime. These findings are consistent with a number 
of others studies that have also reported a reduction in 
post-HAST plasma cortisol levels following both passive 
(e.g. [112, 166]), and active (e.g. [10, 33, 201, 206, 208]), 
HA protocols. For example, Pilch et  al. [166] reported 
that the rise in cortisol over a sauna was attenuated in 
the final exposure in a group of females undertaking 
7 × 30-min saunas over a 14-day period. Similarly, Arm-
strong et al. [10] reported a significant increase in plasma 
cortisol levels during a HAST undertaken on day 1 of an 
8-day active HA regimen, which was not evident on the 
final day. However, it is important to note that, with the 
exception of Tamm et al. [201], these studies reported no 
change in the resting baseline plasma cortisol levels, and 
whilst the majority of studies report reductions in post-
HAST plasma cortisol following HA, some studies have 
shown no effect (e.g. [212, 213]). Although the reasons 
for these discrepant findings are not immediately clear, 
cortisol displays strong circadian effects [215] which may 
influence pre–post HAST measures. Additionally, hydra-
tion appears to potentiate the cortisol response to exer-
cise-heat stress [30] and may also mediate the adaptive 
responses with HA; Francesoni et  al. [55] reported that 
an increase in plasma cortisol during a HAST was only 
evident when participants were hypohydrated, but not 
when euhydrated, and that when the HAST was repeated 
in the hypohydrated state following a period of HA the 
increase in plasma cortisol was attenuated.

Other HPA‑axis hormones
Compared to studies examining the cortisol response, 
a limited number of studies have measured other HPA-
axis hormones in response to HA, with most focusing 
on adrenocorticotropic hormone  (e.g. [112, 166, 201, 
206]) or growth hormone (e.g. [55, 146, 147, 157]); we 
were unable to identify studies reporting changes in 
corticotropin-releasing hormone during HA in humans. 
Leppäluoto et al. [112] reported that plasma adrenocor-
ticotropic hormone  levels, measured post-sauna were 
unchanged over a twice-daily, 7-day sauna HA inter-
vention, with similar data presented by Pilch et al. [166] 
when the same number of saunas were undertaken over 
14  days. In contrast, Timpmann et  al. [206] reported 
that plasma adrenocorticotropic hormone  levels were 

attenuated during a HAST performed after an 8-day 
active HA, with similar data also reported by Tamm 
et  al. [201] following a 10-day active HA. In each 
instance, baseline plasma adrenocorticotropic hor-
mone  levels were unchanged by HA. The discrepancies 
between these studies in the post-HAST changes may 
be related to differences in both the HA regimes (pas-
sive vs active) and HAST, with the exercise-heat stress 
approach employed by Timpmann et al. [206] and Tamm 
et al. [201] likely eliciting a significantly greater thermo-
physiological strain than the passive sauna approach of 
Leppäluoto et  al. [112] and Pilch et  al. [166]. Circulat-
ing growth hormone levels are known to increase with 
hyperthermia [57] and thus a decrease in growth hor-
mone concentration might be hypothesised following a 
period of HA concomitant with the reduction in deep 
body temperature. However, data on the effect of HA 
on growth hormone levels are similarly equivocal, with 
studies showing no effect following a HAST [146, 147], 
an attenuated response [157] or inconsistent findings 
[55], although these differences are not easily attrib-
utable to protocol differences given that all employed 
active HA and HAST approaches, they might be influ-
enced by the pulsatile nature of growth hormone release 
[75]. Nevertheless, baseline plasma growth hormone 
responses were consistent, being unaffected by HA in 
each of these studies.

Taken together, the majority of studies suggest that HA 
does not have any substantial effect on resting baseline 
SAM or HPA-axis hormones, but may reduce the post-
HAST levels, particularly with HAST approaches that 
elicit a pronounced thermo-physiological strain (e.g. 
active approaches). Given the established effect of an 
elevation in deep body temperature on SAM and HPA-
axis hormone release [125], the post-HAST reductions 
in SAM and HPA-axis hormones following HA are likely 
reflective of attenuated thermo-physiological strain in 
the heat-adapted state. Interestingly, this effect does not 
appear to be evident in the resting state, despite the fact 
that resting deep body temperature is typically reduced 
with HA [164, 165], which may indicate a potential floor 
effect for these hormones. Therefore, SAM and HPA-axis 
hormones appear to have limited utility as a biomarker of 
the heat-adapted phenotype when only a resting baseline 
measurement is possible, but may have some utility in 
contexts where individuals can be exposed to a standard-
ised thermal stressor, i.e. a HAST.

Inflammatory markers
The most commonly measured inflammatory markers in 
the context of HA are the interleukins (IL), IL-6 and IL-10 
as well as tumour necrosis factor (TNF) α, and C-reac-
tive protein; other inflammatory markers have received 
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scant attention. Interleukins are a type of cytokine that 
are expressed by leukocytes, as well as other cells, and 
regulate immune and inflammatory actions through 
multifarious actions on immune cells; including activa-
tion, differentiation, proliferation, maturation, migration, 
and adhesion. IL-6 is regarded as having both anti- and 
pro-inflammatory effects with IL-10 being considered an 
anti-inflammatory cytokine [91]. TNF α is an inflamma-
tory cytokine produced by macrophages/monocytes dur-
ing acute inflammation [85] and C-reactive protein is an 
acute phase reactive protein that is induced by IL-6 and 
has both pro- and anti-inflammatory properties [144].

Interleukin‑6 and interleukin‑10
The plasma concentration of both IL-6 and IL-10 has 
been shown to increase in response to an acute exercise-
heat stress (e.g. [30, 70, 71, 104, 110, 173], although some 
studies have failed to report an increase [92, 149]. These 
differences between-studies could be the result of a num-
ber of factors including the magnitude of thermal stress 
that the participants were exposed to during the HAST 
[173], which is likely to be influenced by the HAST pro-
tocol as well as the health and fitness of the participants. 
IL-6 appears to be the most commonly investigated 
cytokine in the context of HA and whilst a number of 
studies investigating the effect of HA interventions on 
IL-6 have shown that neither the baseline nor the post-
HAST IL-6 concentrations are different following a 
period of HA ([30, 71, 93, 213], others have indicated that 
plasma IL-6 concentration may be altered with HA. For 
instance, Lee and Thake [110] reported that the increase 
in IL-6 during exercise-heat stress was reduced on the 
10th day of HA. Omassoli et al. [156] also reported sig-
nificant main effects for both the baseline and post-
HAST IL-6 concentration measured on days 0, 2, 6, 9 
and 23 of HA, but the exact days when the differences 
occurred was not reported, which limits the conclusions 
that can be drawn. Similarly, although Kuennen et  al. 
[104] reported that the immediate and 2  h post-HAST 
IL-6 data were unchanged following HA, there was evi-
dence for a more-rapid return to baseline 2 h post-HAST. 
We were unable to identify any studies that have reported 
a reduction in baseline plasma IL-6 concentrations fol-
lowing a period of HA.

Compared to IL-6, a smaller number of studies have 
investigated the effect of HA on IL-10. Yamada et al. [218] 
showed no increase in IL-10 in HASTs undertaken before 
or after HA, whilst conversely, Kuennen et al. [104] dem-
onstrated that the increase in IL-10 that was observed 
in an initial HAST was not evident after 7  days of HA, 
with similar data reported by Lee and Thake [110] on 
the 10th day of HA. Closer inspection of Kuennen et al 
[104] data suggests that following HA the baseline IL-10 

concentration was approximately halved (from ~ 10 ± 1 
to ~ 5 ± 1   pg.mL−1), but their statistical analysis, which 
does not appear to include a between group compo-
nent, did not evaluate this. As far as we are aware, there 
are no studies that have reported a statistically signifi-
cant reduction in baseline plasma IL-10 concentration. 
The apparent discrepancies between HA studies that 
have measured plasma cytokine concentrations can be 
explained by the research of Rhind et  al. [173], which 
demonstrated that cytokine concentration increases dur-
ing exercise are only evident when an individual becomes 
hyperthermic, and may be abolished when deep body 
temperature is clamped at resting levels during the same 
exercise task. Although the threshold deep body temper-
ature for promoting the release of the various cytokines 
is unknown, these data provide a plausible mechanism 
accounting for the lack of increase in cytokine levels dur-
ing the initial HAST in some studies (i.e. the thermal 
threshold for cytokine release was not surpassed) as well 
as the reduction seen in the post-HAST cytokine levels 
following a period of HA, where an elevation in cytokine 
levels was seen in the initial HA (i.e. the lower thermal 
strain during the HAST when heat adapted means that 
the individual no longer surpasses the thermal threshold 
for cytokine release).

Tumour necrosis factor α and C‑reactive protein
Although TNF α levels have been shown to increase 
when exercise in undertaken in the heat compared to 
cooler conditions [193], a limited number of studies have 
reported plasma TNF α levels in response to HA. Both 
Kuennen et al. [104] and Lee and Thake [110] observed 
no increase in plasma TNF α concentrations in HASTs 
undertaken before or after HA, in each instance the 
HASTs employed were sufficient to elevate the con-
centration of other cytokines (e.g. IL-6, IL-10) suggest-
ing that TNF α is less sensitive to heat stress than other 
cytokines. Similarly, Costello et  al. [30] reported that 
C-reactive protein was unchanged in HASTs undertaken 
before or after 10 days of HA. Kaldur et al. [92] reported 
an in increase in the log C-reactive protein concentration 
during an endurance exercise task following HA, but the 
open-ended nature of their endurance task resulted in an 
increased test duration following the HA and limits the 
ability to compare these findings to other studies. In each 
of the aforementioned studies there was no evidence for 
baseline changes in the TNF α or C-reactive protein lev-
els. This observation, as well as the high reported daily 
variability of a number of these inflammatory biomark-
ers [70], and the fact that inflammation is a generalised 
immune response which may be elicited numerous non-
thermal stimuli, will likely negate the use of inflammatory 
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markers in the context of a biomarker of the heat-adapted 
phenotype.

Heat shock proteins
HSPs are a conserved group of proteins that vary in 
molecular mass from ∼ 15 to 110 kDa [101]. The expres-
sion of these proteins can be induced by a variety of 
stressors, including exercise, hypoxia, energy depletion, 
acidosis, reactive oxygen and high body temperatures 
[101, 103], with the 72-kDa protein (HSP72 or HSP70) 
appearing to be the most inducible and thermosensitive 
HSP [101], as well as the most studied HSP in the context 
of HA. Within cells these HSPs (iHSP) prevent apoptosis 
and inflammation [222] and act as a molecular chaper-
one, accelerating cellular repair from heat stress, ischae-
mia and endotoxic shock and providing cytoprotection 
against subsequent, more extreme, and potentially lethal 
exposure to these stressors [6, 101, 108]. HSPs can also 
be released into the systemic circulation from a variety 
of cells (eHSP), where they appear to serve a range of 
immunological functions [103].

Extracellular heat shock proteins
A number of studies have examined the effect of HA on 
extracellular HSP (eHSP) levels in plasma and serum, 
with the possibility of using eHSP as a biomarker of the 
HA phenotype proposed by Kresfelder et  al. [102], who 
demonstrated that individuals who were able to effec-
tively adapt to a 6-day HA regimen had a concomitant 
reduction in resting eHSP70. However, subsequent stud-
ies demonstrated mixed results. For instance, Yamada 
et  al. [218] and Neal et  al. [143] both reported that the 
resting baseline eHSP70 concentration was unchanged 
following 10–11  days of HA, with Yamada et  al. [218] 
also demonstrating that eHSP levels did not increase in 
HASTs performed before and after the HA. In contrast, 
Marshall et  al. [121] demonstrated a small post-exer-
cise increase in eHSP on each of 2 consecutive days of 
exercise-heat stress, as well as a significant reduction in 
baseline eHSP70 levels on the day after the second heat 
exposure, but this likely proceeded the development of 
many of the whole-body indices of adaptation and so the 
physiological relevance of this change as a biomarker of 
HA is questionable. However, some studies have dem-
onstrated that HA attenuates the eHSP response to a 
HAST. For example, Magalhães et al. [117] reported that 
although baseline eHSP70 was unaffected by an 11-day 
HA regime, a significant increase in eHSP70 observed 
in the HAST undertaken before HA was abolished in 
the post-HA HAST;  a similar attenuation of the eHSP 
response to exercise-heat stress was reported by Lee and 
Thake [110] following a 10-day HA regime.

The reasons for the differences in eHSP response 
between these studies is not clear, although the data of 
Magalhães et  al. [117] demonstrated that the increases 
in eHSP70 following a HAST had returned to baseline 
within 1  h, indicating that sample timing may influ-
ence findings. In addition, the eHSP concentration dur-
ing exercise appears to be closely related to the peak 
deep body temperature achieved [117], which may need 
to exceed 38.5  °C to elicit an increase in eHSP70 levels 
[65]. Thus, taken together, it appears that there is some 
evidence for a post-HA reduction in eHSP levels when 
measured after a HAST, which may be a function of a 
lower deep body temperature when heat adapted, but 
this has not been universally demonstrated. However, 
baseline eHSP levels do not appear to be consistently 
reduced in the heat-adapted state. This conclusion is 
in keeping with the trivial effect-size of HA on resting 
eHSP70 (Hedges’ g = 0.18) reported in a meta-analysis 
[205]. Moreover, eHSP may also be elevated in inflam-
matory clinical conditions, unrelated to heat adaption 
(e.g. [109]), whilst the immunological functions of eHSP 
have led to the suggestion that it might have utility as a 
biomarker of overtraining [103] and data from Guy et al. 
[70] have shown a high within-participant variability in 
eHSP (37%) when measured within a 7-day period. Taken 
collectively, these factors may limit the sensitivity of 
eHSP measurements for identifying individuals who have 
acquired the heat acclimated phenotype.

Intracellular heat shock proteins
Although sample collection is slightly more technically 
challenging than for the measurement of eHSP, intracel-
lular HSP70 (iHSP) content has been quantified within 
PBMCs in a large number of HA studies (e.g. [5, 110, 
117, 122, 127, 218]), although more invasive measure-
ments of muscle HSP content are sometimes reported 
[208]. Research examining iHSP levels during HA in 
humans has shown that shorter durations of HA, e.g. 1 to 
2 days [122, 218] do not typically result in a measurable 
increase in iHSP70 levels, whereas significant increases 
in iHSP70 content may develop from 3  days onwards 
[110], and are commonly reported over 6 to 10  days of 
active HA [5, 110, 117, 122, 127, 218]) where a progres-
sive accumulation of iHSP70 may be evident [110]. 
Indeed, a recent meta-analysis concluded that HA has a 
large significant effect overall on iHSP70 protein expres-
sion (Hedges’ g = 0.97), with the number of days of HA a 
significant moderator of the iHSP response [142]. How-
ever, it is interesting to note that Watkins et al. [208] did 
not detect any significant increase in muscle HSP con-
tent after completion of a 7-day active HA intervention, 
but the reasons for the differences between this study 
and those utilising the measurement of iHSP70 levels in 
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PBMCs is not clear. Likewise, Morton et al. [138] demon-
strated that passively elevating core and muscle tempera-
ture to levels encountered during aerobic exercise did not 
increase skeletal muscle iHSP, implying non-thermal fac-
tors elicit the elevations in muscle HSP content seen with 
exercise in the heat.

In addition, whilst the majority of research has focused 
on iHSP70/HSP72, a small number of studies have exam-
ined the effect of HA on iHSP90. First among these were 
McClung et al. [127] who demonstrated that the increase 
in iHSP90 (21.1%) was similar to the increase in iHSP72 
(+ 17.7%) over a 10-day HA intervention. Similarly, 
Gibson et  al. [66] demonstrated that iHSP90α mRNA 
changes over the course of HA paralleled the changes in 
iHSP70 mRNA, with both increasing to a similar extent 
during exercise-heat stress on day 1 and 10 of an HA 
intervention. McClung et  al. [127] also reported a sig-
nificant correlation (r2 = 0.89) between the percentage 
change in AUC for a deep body temperature of > 38.0 °C 
and ex  vivo HSP90 inducibility between days 1 and 10 
of the HA intervention, but not HSP72, suggesting that 
iHSP90 could have some benefit over iHSP70 in terms of 
identifying individuals who have acquired a given level of 
adaptation to heat, possibly because HSP90 plays a func-
tionally important role in the regulation of cutaneous 
blood flow during exercise-heat stress [59]. However, it is 
also important to note that other stressors such as exer-
cise [113] and hypoxia can result in increased iHSP, albeit 
possibly at a lower level than that induced by exposure to 
heat stress [110] and there is also some evidence for sea-
sonal variation in iHSP levels [217].

Sweat biomarkers
Whilst biomarker development has traditionally focused 
on blood and urine analysis, there is a growing realisa-
tion of the potential of sweat analysis in a biomarker con-
text [199], driven in part by technological developments 
in wearable sensor technology [151]. Although sweat is 
primarily composed of water, it also contains a mixture 
of chemicals in varying concentrations, including elec-
trolytes  (Na+,  Cl−,  K+,  Ca2

+,  Mg2
+,  Fe2

+), micronutrients 
(vitamins), metabolites (e.g. glucose, lactate, ammonia, 
urea, bicarbonate, amino acids, ethanol), cytokines, and 
cortisol [13]. The recent application of high-throughput 
metabolomic and proteomic approaches (e.g. [82, 186]), 
has enabled further quantification of an extensive range 
of molecules in sweat, which may have future utility in a 
biomarker context (see Sect. “Challenges and opportuni-
ties” for further discussion of ‘omics’ approaches). How-
ever, whilst the vast majority of these molecules have yet 
to be examined within the context of HA, reductions in 
the electrolyte content of eccrine sweat, and specifically 
sweat sodium  (Na+) and chloride  (Cl−), with HA are 

well established [205] and may result from the increased 
eccrine gland responsiveness to aldosterone [96] which 
will increase sweat  Na+ reabsorption by increasing the 
activity of  Na+–K+-ATPase on the basolateral membrane 
in the eccrine sweat duct [13].

Recently, the changes in sweat electrolyte concentra-
tion following HA have been assessed by meta-analysis 
with both  Na+ and  Cl− demonstrating a large effect-size 
for the reduction in the concentration of both sweat  Na+ 
(Hedges’ g = −  0.94) and sweat  Cl− (Hedges’ g = −  2.02) 
[205]. This meta-analysis also concluded that the concen-
tration of sweat  K+ is unchanged with HA, a finding that 
is consistent with recent primary research examining the 
daily time course of changes in sweat electrolyte concen-
tration over a 10-day heat acclimation programme [97], 
and demonstrating that the reductions in sweat  Na+ and 
 Cl− concentration were significant from the third day of 
HA onwards. Klous et al. [97] also measured sweat lactate 
concentration over the course of the HA intervention, 
which broadly paralleled the time course of reductions 
in sweat  Na+ and  Cl−, becoming significant from day 6 
onwards and appearing to be caused by a greater dilu-
tion due to an increased local sweat rate, rather than a 
reduced excretion rate [97]. The observation of a reduced 
sweat lactate concentration with HA has been replicated 
by others (e.g. [209]). Given that the changes in the con-
centration of the various sweat electrolytes may occur 
through different mechanisms, each may provide subtly 
different information about the adaptive process to heat. 
For instance, sweat  Na+ concentration may yield informa-
tion about the reabsorption rates of  Na+ by sweat ducts, 
which may be linked to fluid-regulatory balance, whilst 
sweat lactate concentration may provide useful informa-
tion about alterations in sweating rate, which is linked to 
maximum evaporative heat loss potential, although the 
latter is also influenced by metabolic stress [4].

The reduction in sweat  Na+ concentration appears 
to persist with longer HA regimes > 20  days [189, 191], 
decay when the HA is stopped [97, 143] and be less 
affected by diet than plasma aldosterone concentra-
tion [2]; it can also be re-established with a period of 
re-acclimation [97]. Together this suggests that the con-
centration of certain sweat electrolytes may usefully track 
changes in heat acclimation state, but further research is 
required to verify this. However, caution is warranted due 
to reported substantial inter and intra-individual variabil-
ity in sweat  Na+ concentration [11]. Sweat composition 
is influenced by multifarious factors not related to HA, 
including training status, genetics/disease, exercise inten-
sity, diet, hydration status, sweat collection method and 
collection site [12], each of these factors may adversely 
impact on the utility of sweat as a biomarker of the heat-
adapted state. From a practical perspective, because of 
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the low rate of resting eccrine sweat secretion, some form 
of exercise-heat stress (e.g. HAST) is typically required in 
order to stimulate sufficient sweat production to enable 
collection; as we detailed in Sect. “Introduction”, this may 
be neither desirable nor practical. However, a significant 
reduction in resting sweat  Na+ concentration has been 
reported following both 6- and 23-day HA programmes 
using pilocarpine iontophoresis [35, 189, 191]. Similarly, 
new technological advances incorporating the use of 
microfluidics and electrochemical sensing into wearable 
sweat patch development may support improved resting 
sweat collection in the future [151, 199].

Challenges and opportunities
Based upon the information presented in Sect.  “Can-
didate biomarkers” it is clear that, following a period of 
HA, the concentration of a number of readily measur-
able biomolecules may be reduced during exercise-heat 
stress (i.e. a HAST), reflecting the reduction in thermo-
physiological strain across numerous body systems (see 
Table  1). These biomolecules might, therefore, have 
potential utility as biomarkers of the heat-adapted phe-
notype. However, beyond negating the need for invasive 
deep-body temperature measurements, the practical 
advantage of measuring these biomolecules in this way 
is limited, because the considerable logistical challenges 
and personnel burden of administering a suitably stand-
ardised HAST remain. Moreover, the extent to which 
such a biomarker would provide additional information 
over a range of simple and minimally invasive physiologi-
cal measures that are already commonly employed in a 
HAST, such as the assessment of whole-body sweating 
rate (through body mass change) or sweat  Na+ concen-
tration, cardiovascular strain, plasma volume changes 
(through fingertip capillary blood sampling) or skin tem-
perature measurement, is questionable.

Among the various biomolecules that we have reviewed, 
there is some evidence that the plasma, serum, sweat or 
intracellular concentration of a small subset of these may 
be altered in the resting state following HA (see Table  1). 
For the reasons outlined above, a change in the resting con-
centration of a given biomolecule is likely to be of greater 
practical relevance in the context of developing a molecular 
biomarker of the heat-adapted state than changes observed 
during a HAST. However, as we have highlighted, for many 
of these putative molecular biomarkers the data are limited 
at present to a small number of studies, or are not conclusive 
and further research is needed to confirm the robustness of 
reported baseline changes; in the majority of cases relevant 
data are lacking from female volunteers. Moreover, given the 
pronounced hypervolemia that occurs with HA, it is inter-
esting that some of the studies reviewed have not reported 
appropriate adjustment of biomarker concentrations to 

account alterations in plasma volume [124]. Without these 
adjustments, for a fixed circulating amount of a molecule the 
resting plasma/serum concentration will typically be reduced 
following a period of HA, but as a consequence of the hyper-
volemia rather than a change in the amount of the circulating 
molecule. Differences in the application of this adjustment 
among the studies that we have reviewed may have contrib-
uted to some of the inter-study variability.

Moreover, HA has been described as a continuum of 
many parallel processes [120]. For example, fluid regula-
tory changes and the associated haematological effects 
may be observed very quickly (e.g. 2–3  days; [14]), 
whereas cytoprotective (> 3  days; [142]) and sudomo-
tor adaptions (e.g. 7–14  days; [175]) typically develop 
over longer timescales. Thus, whilst the measurement 
of a given biomolecule may provide useful information 
about changes in a particular biological system, it may 
not necessarily provide information about the integrated 
adaptive process to heat, i.e. the overall state of ‘heat 
readiness’. For instance, a change in a biomarker indica-
tive of expanded plasma volume (e.g. haemoglobin con-
centration) might precede a change in a biomarker of 
cytoprotection (e.g. iHSP70) or sudomotion (e.g. sweat 
 Na+ concentration). Temporal dissociation between 
changes in the concentration of some of these putative 
biomarkers and the induction of the ‘hallmark’ indices of 
the heat-adapted state may confound the development of 
a biomarker of the heat-adapted state. Allied to this, we 
are not aware of any research that has examined the rela-
tionship between the rate of decay in hallmark indices of 
HA that occurs once the heat stressor is removed and the 
kinetics of many of these biomolecules, but it is known 
that, similar to the induction time-course, the decay rate 
of the various hallmark indices of heat adaption is also 
variable [32]. Therefore, research is needed to better 
understand the temporal relationship between changes 
in biomolecule concentration and the “hallmark” indices 
of the heat-adapted phenotype during, and following, an 
HA programme.

From the information presented in Sect.  “Candidate 
biomarkers”, it is also apparent that the concentration of 
many of these putative biomarkers has the potential to 
be altered by a variety of non-thermal stressors. This is 
perhaps unsurprising given the multi-systemic nature 
of the adaptions to heat, but will likely result in com-
monalities in the biochemical changes induced by heat 
exposure and those occurring with exposure to other 
stressors such as: exercise; infection; dietary change 
(calorific intake or composition); disease; psychological 
stress; other environmental stressors such as hypoxia. 
Such an overlap is likely to adversely impact on the sensi-
tivity and specificity of a given biomolecule in providing 
useful information about the heat-adapted phenotype. 
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Table 1 Summary of candidate biomarkers for assessing the heat acclimated phenotype at rest and following a Heat Acclimation 
State Test (HAST)

Biomarker Medium Post-HA baseline change Post-HA HAST change

Fluid regulatory Results Results

 Aldosterone Blood ↑** ↓*  ↔ ** ↓**  ↔ **

 Arginine-vasopressin Blood ↑*  ↔ ** ↓**  ↔ **

 Copeptin Blood  ↔ ** ↓*  ↔ *

 Renin Blood ↑* ↓*  ↔ ** ↓**  ↔ **

 Atrial natriuretic peptide Blood ↓*  ↔ **

 Pro-Atrial natriuretic peptide Blood  ↔ *

 Brain natriuretic peptide Blood  ↔ *

Renal stress and injury

 Creatinine Blood  ↔ ** ↓**  ↔ **

 Neutrophil gelatinase-associated lipocalin Urine  ↔ *

 Kidney injury molecule-1 Urine  ↔ *

Haematological

 Haematocrit Blood ↓**

 Haemoglobin concentration Blood ↓**

 Haemoglobin mass ↑*  ↔ *

 Plasma protein Blood ↑**  ↔ *

 Erythropoietin Blood ↑*  ↔ *

 Energy homeostasis

 Triiodothyronine (T3) Blood ↓**  ↔ *

 Thyroxine (T4) Blood ↓**  ↔ *

 Orexin Blood ↓*

 Prostaglandin E2 Blood ↓*

 Cyclooxygenase-2 Blood ↓*

Sympathetic–adrenomedullary axis

 Adrenaline Blood  ↔ ** ↓**  ↔ *

 Adrenaline Urine  ↔ *

 Noradrenaline Blood  ↔ ** ↓**  ↔ **

 Noradrenaline Urine ↑* ↓*

 Metanephrine Blood  ↔ * ↓*  ↔ *

 Normetanephrine Blood ↓*  ↔ * ↓**

Hypothalamic–pituitary–adrenal axis

 Cortisol Blood ↓*  ↔ ** ↓**  ↔ *

 Adrenocorticotropic hormone Blood  ↔ ** ↓**  ↔ **

 Growth hormone Blood  ↔ ** ↓*  ↔ **

 Interleukin-6 Blood  ↔ ** ↓**  ↔ **

 Interleukin-10 Blood  ↔ ** ↓*

 Tumour necrosis factor α Blood  ↔ **  ↔ **

 C-reactive protein Blood  ↔ *  ↔ *

Heat shock

 Intracellular heat shock protein 70 PBMC ↑**

 Intracellular heat shock protein 70 Muscle  ↔ *

 Extracellular heat shock protein 70 Blood ↓**  ↔ ** ↓**  ↔ **

 Intracellular heat shock protein 90 PBMC ↑*

 Sudomotor

 Sodium Sweat ↓** ↓**

 Chloride Sweat ↓**

 Potassium Sweat  ↔ **

 Lactate Sweat ↓**
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However, it has been recognised that exposure to dif-
ferent stressors may invoke common adaptive pathways 
(e.g. heat and hypoxia), and that the adaptions occur-
ring through exposure to one stressor may confer both 
acclimatory (e.g. whole body) and cytoprotective (e.g. 
cellular) effects when exposed to another stressor [40]. 
As such, it is unclear to what extent, if any, the poten-
tial overlap between changes in biomolecules occurring 
with exposure to non-thermal stressors would present a 
meaningful problem, given that such changes may still be 
indicative of an improved ability to tolerate heat stress. 
Similarly, whilst seasonal changes may occur in a num-
ber of the biomolecules that we have identified, these 
may simply be reflective of natural acclimatisation to an 
increased ambient temperature, and would therefore be 
expected to improve tolerance to thermal stress.

Taken together, the evidence presented in this review 
suggests that, at present, no single biomolecule (i.e. a uni-
variable approach) will provide sufficient information or 
demonstrate adequate sensitivity and specificity to act as 
a biomarker of the heat-adapted phenotype. However, the 
use of multivariable modelling approaches has been suc-
cessful employed in other fields to develop more power-
ful biomarkers with superior diagnostic ability (e.g. [48]). 
Such an approach may be particularly well suited to the 
multi-system adaptions that are characteristic of HA. 
Ensuring that such a model includes variables indicative 
of a range of body systems associated with HA, as well 
as potentially including information from other factors 
known to influence thermoregulation such as anthropo-
metric (e.g. body mass, body composition, body surface 
area) and demographic factors (e.g. age and gender) [77]), 
might overcome some of the challenges identified.

Moving beyond multivariable approaches incorporat-
ing small numbers of variables (e.g. < 10 variables), the 
future application of ‘omics’ approaches including metab-
olomics and transcriptomics may prove fruitful. The 
metabolome is directly linked to changes in cell metabo-
lism that are caused by environmental stimuli, as well as 
diseases, and utilises the measurement of hundreds to 
thousands of metabolites within a biological medium. 
Whilst this approach has already proved fruitful in bio-
marker development [98], it is not without challenges 
including strict technical requirements related to sam-
ple storage and analysis, high inter-individual variability, 
the potential confounding effects of a range of demo-
graphic factors, and the need for large samples sizes (e.g. 

n = 200–400) to protect against false discovery rate [203]. 
The ‘n’ for most HA studies is an order of magnitude 
lower than that recommended for metabolomics studies 
owing to the time and resource intensive nature of this 
type of work [205].

The transcriptome is the complete set of all RNAs 
transcribed by certain tissues or cells and has emerged 
as a powerful approach for investigating the molecu-
lar response to environmental stressors [220]. Indeed, 
the transcriptomic response of human PBMCs to heat 
has recently been reported, and is characterised by sig-
nificant gene suppression and differentially expressed 
genes encoding proteins involved in proteostasis, energy 
metabolism, cell growth and proliferation, and cell death 
and survival [18]. However, the significance of these 
observations in terms of developing a biomarker of 
heat adaptation is, as yet, unclear. Finally, technological 
advances in the development of sensors for non-invasive 
and minimally invasive continuous analyte monitoring 
are now enabling the development of wearable devices 
that are overcoming historical challenges for biological 
sample analysis [60], and in combination with real time 
biomonitoring techniques and more complex analysis 
approaches (e.g. the use of resting heart rate variability; 
[49]), may pave the way for addressing the aforemen-
tioned temporal problems.

Conclusions
Quantifying the level of phenotypic adaption to heat 
from the measurement of a biomolecule(s) may be 
desirable in a number of contexts (e.g. defence, occupa-
tional, sporting), particularly with emerging technologi-
cal developments. Such a biomarker may have utility to 
characterise the ‘heat readiness’ of an individual, thereby 
reducing heat-illness risk and increasing operational and 
training capacity. This narrative review of literature has 
shown that the concentration of a number of biomol-
ecules implicated in fluid regulation, energy homeosta-
sis, sympatho-adrenal balance, inflammation, sudomotor 
adaption and acquired thermal tolerance may be altered 
when an individual is exposed to a standard heat stress 
following a period of HA. However, only a small subset 
of these biomolecules appears to be altered at baseline. 
Moreover, for many of these putative biomarkers the data 
are equivocal and/or limited at present to a small num-
ber of studies and (male) participants. Given the multi-
systemic nature of adaption to heat, we speculate that no 

Table 1 (continued)
↑ = increase in concentration or level of biomolecule; ↓ = decrease in concentration or level of biomolecule; ↔  = no change in concentration or level biomolecule

HA heat acclimation/acclimatisation, PBMC peripheral blood mononuclear cell

*Study supporting identified change when heat adapted

**Multiple studies supporting identified change when heat adapted



Page 18 of 24Corbett et al. The Journal of Physiological Sciences           (2023) 73:26 

single biomolecule is likely to have sufficient sensitivity 
and specificity as a biomarker of the heat-adapted pheno-
type when used in isolation. Thus, we propose that future 
research should verify the robustness of the change in 
the baseline concentration of the identified biomolecules 
following a period of HA and their temporal association 
with different ‘hallmark indices’ of the heat-adapted phe-
notype (i.e. physiological biomarkers, including appro-
priate deep body temperate measurements). The use of 
multivariable approaches that include biomarkers pro-
viding information about a range of physiological systems 
should also be explored.
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