7 research outputs found

    Laser Trabeculoplasty Induces Changes in the Trabecular Meshwork Glycoproteome: A pilot study

    No full text
    Laser trabeculoplasty (LT) is a commonly used modality of treatment for glaucoma. The mechanism by which LT lowers the intraocular pressure (IOP) is unknown. Using cat eyes, selective laser trabeculoplasty (SLT) with a Q-switched frequency doubled Nd:YAG laser was used to treat the trabecular meshwork (TM). Laser treated TM was then subjected to proteomic analysis for detection of molecular changes and histological analysis for the detection of structural and protein expression patterns. In addition, the protein glycosylation patterns of laser treated and non-treated TM was assessed and differentially glycosylated proteins were proteomically identified. SLT laser treatment to the TM resulted in elevated glycosylation levels compared to non-lasered TM. TM laser treatment also resulted in protein expression levels changes of several proteins. Elevated levels of biglycan, keratocan and prolargin were detected in laser treated TM compared to non-lasered controls. Further investigation is anticipated to provide insight into how glycosylation changes affect TM proteins and TM regulation of aqueous outflow in response to laser trabeculoplasty

    Human Tear Serotonin Levels Correlate with Symptoms and Signs of Dry Eye

    No full text
    PURPOSE: Serotonin, a neurotransmitter known to be involved in nociceptor sensitization, is present in human tears. The purpose of this study was to correlate tear serotonin levels, as a marker of nociceptor sensitization, to facets of dry eye (DE) including symptoms and signs. DESIGN: Cross-sectional study PARTICIPANTS: Sixty-two patients with normal eyelid and corneal anatomy were prospectively recruited from a Veterans Administration Ophthalmology Clinic over 11 months. METHODS: DE symptoms (Ocular Surface Disease Index [OSDI]), signs (tear break-up time [TBUT], corneal staining, and Schirmer’s score), and clinical descriptors of neuropathic ocular pain (NOP) (sensitivity to light and/or sensitivity to wind) were assessed. For tear analysis, each patient’s tears were collected after instilling 50µl of sterile saline to the lower cul-de-sac of each eye and using capillary action microcaps to collect the ocular wash. Tear serotonin levels were measured using enzyme-linked immunosorbent assay. MAIN OUTCOMES MEASURED: Correlations between tear serotonin concentrations and DE symptoms and signs. RESULTS: The mean age of the population was 61±14 years and 84% (n=52) of the patients were male. Serotonin concentrations negatively correlated with Schirmer’s scores (r=−0.28; p=0.02), but did not correlate with other DE parameters, such as OSDI scores, sensitivity to light or wind, TBUT, or staining. According to our hypothesis, we divided patients into groups based on both DE symptoms and aqueous tear production; serotonin concentrations were found to be significantly higher in DE group 1 (OSDI≥6 and Schirmer’s<8) compared to both DE group 2 (OSDI≥6 and Schirmer’s≥8) and controls (OSDI<6 and Schirmer’s≥8). Patients in the DE group 2 more frequently complained of sensitivity to light (64%) and wind (67%) compared to the DE group 1 (40% and 60%, respectively) and controls (8% and 17%, respectively). CONCLUSION: Patients with DE symptoms and aqueous tear deficiency had higher tear serotonin levels compared to those with DE symptoms but normal tear production and those without DE symptoms

    Reduced photoreceptor death and improved retinal function during retinal degeneration in mice lacking innate immunity adaptor protein MyD88

    No full text
    The injury inflammatory response mediated by the innate immune system is an important contributor to neurodegeneration in the central nervous system (CNS) and retina. A major branch of the innate immune system is regulated by the Toll-like receptors (TLRs), which are receptors for endogenous damage associated molecules released from injured cells as well as pathogen-derived molecules, and interleukin-1 receptors (IL-1R), which are activated by IL-1α, IL-1β and IL-18 cytokines. TLRs and IL-1R are expressed on immune and non-immune cell types and act as first responders to cell damage, which results in tissue repair, or inflammation and apoptosis. Both TLR and IL-1R require the adaptor protein myeloid differentiation primary response gene 88 (MyD88) for signaling. Although inflammation is implicated in neuronal death in the retina, the role of MyD88-dependent TLR and IL-1R signaling in retinal degeneration is unknown. Therefore, the purpose of this study was to investigate the role of MyD88-mediated signaling in neuronal degeneration in the retinal degeneration 1 (rd1) mouse model, which exhibits a phenotype of rapid photoreceptor death and inflammation. To generate rd1 mice lacking the MyD88 gene, rd1 were bred with MyD88 knockout mice (MyD88(-/-)) for several generations to produce rd1/MyD88(+/+) and rd1/MyD88(-/-) genotypes. Chemokine mRNA expression levels were analyzed by qRT-PCR, and recruitment of activated microglia was quantified by immunodetection of the IBA-1 protein. Retinal outer nuclear layer cell counts were performed to quantify photoreceptor degeneration, and retinal function was assessed using electroretinograms (ERG). Our results revealed that retinal expression of Ccl2, Ccl4, Ccl7 and Cxcl10 was reduced by 2 to 8-fold in rd1/MyD88(-/-) mice compared with rd1/MyD88(+/+) mice (p<0.05), which coincided with attenuated microglial activation, higher numbers of photoreceptors and higher retina responses to photopic and scotopic stimuli. At later ages, rd1/MyD88(-/-) had reduced chemokine expression and higher photopic responses but no change in microglial recruitment compared with rd1 mice with functional MyD88. In conclusion, lack of MyD88-mediated signaling increased photoreceptor survival and retina function in rd1 mice, which implicates MyD88-mediated innate immunity pathways as an important pathogenic factor during retinal degeneration

    Activation of Wnt/β-catenin signaling in Muller glia protects photoreceptors in a mouse model of inherited retinal degeneration

    No full text
    The canonical Wnt/β-catenin (“Wnt”) pathway is an essential signaling cascade in the embryonic central nervous system (CNS) that regulates neuronal differentiation and survival. Loss of Wnt signaling in developing and adult tissue has been implicated in numerous CNS diseases, but the precise role of Wnt in regulating neuronal survival, and how its absence could lead to disease, is not understood. In this study, we investigated the effect of Wnt activation on neuronal survival in the adult retina, and identified cellular and molecular mediators. Pan-retinal Wnt signaling activation using Wnt3a induced functional and morphological rescue of photoreceptor neurons in the rd10 mouse model of retinal degeneration. Furthermore, Wnt activation using constitutively active β-catenin specifically targeted to Muller glia increased photoreceptor survival and reduced markers of glial and neuronal remodeling. Wnt-induced photoreceptor protection was associated with elevated levels of prosurvival protein Stat3, and was reduced by shRNA-mediated knockdown of Stat3, indicating cross-talk between pro-survival pathways. Therefore, these data increase our understanding of the role of Wnt signaling in the retina, and identify radial Muller glia as important cellular mediators of Wnt activity
    corecore