92 research outputs found
Codon Preference Optimization Increases Heterologous PEDF Expression
Pigment epithelium-derived factor (PEDF) is widely known for its neurotrophic and antiangiogenic functions. Efficacy studies of PEDF in animal models are limited because of poor heterologous protein yields. Here, we redesigned the human PEDF gene to preferentially match codon frequencies of E coli without altering the amino acid sequence. Following de novo synthesis, codon optimized PEDF (coPEDF) and the wtPEDF genes were cloned into pET32a containing a 5′ thioredoxin sequence (Trx) and the recombinant Trx-coPEDF or Trx-wtPEDF fusion constructs expressed in native and two tRNA augmented E coli hosts - BL21-CodonPlus(DE3)-RIL and BL21-CodonPlus(DE3)-RP, carrying extra copies of tRNAarg,ile,leu and tRNAarg,pro genes , respectively. Trx-PEDF fusion proteins were isolated using Ni-NTA metal affinity chromatography and PEDF purified after cleavage with factor Xα. Protein purity and identity were confirmed by western blot, MALDI-TOF, and UV/CD spectral analyses. Expression of the synthetic gene was ∼3.4 fold greater (212.7 mg/g; 62.1 mg/g wet cells) and purified yields ∼4 fold greater (41.1 mg/g; 11.3 mg/g wet cell) than wtPEDF in the native host. A small increase in expression of both genes was observed in hosts supplemented with rare tRNA genes compared to the native host but expression of coPEDF was ∼3 fold greater than wtPEDF in both native and codon-bias-adjusted E coli strains. ΔGs at −3 to +50 of the Trx site of both fusion genes were −3.9 kcal/mol. Functionally, coPEDF was equally as effective as wtPEDF in reducing oxidative stress, promoting neurite outgrowth, and blocking endothelial tube formation. These findings suggest that while rare tRNA augmentation and mRNA folding energies can significantly contribute to increased protein expression, preferred codon usage, in this case, is advantageous to translational efficiency of biologically active PEDF in E coli. This strategy will undoubtedly fast forward studies to validate therapeutic utility of PEDF in vivo
Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate
We used multipotent stem cells (MSCs) derived from the young rat subventricular zone (SVZ) to study the effects of glutamate in oligodendrocyte maturation. Glutamate stimulated oligodendrocyte differentiation from SVZ-derived MSCs through the activation of specific N-methyl--aspartate (NMDA) receptor subunits. The effect of glutamate and NMDA on oligodendrocyte differentiation was evident in both the number of newly generated oligodendrocytes and their morphology. In addition, the levels of NMDAR1 and NMDAR2A protein increased during differentiation, whereas NMDAR2B and NMDAR3 protein levels decreased, suggesting differential expression of NMDA receptor subunits during maturation. Microfluorimetry showed that the activation of NMDA receptors during oligodendrocyte differentiation elevated cytosolic calcium levels and promoted myelination in cocultures with neurons. Moreover, we observed that stimulation of MSCs by NMDA receptors induced the generation of reactive oxygen species (ROS), which were negatively modulated by the NADPH inhibitor apocynin, and that the levels of ROS correlated with the degree of differentiation. Taken together, these findings suggest that ROS generated by NADPH oxidase by the activation of NMDA receptors promotes the maturation of oligodendrocytes and favors myelination
Pigment Epithelium–Derived Factor Regulates Lipid Metabolism via Adipose Triglyceride Lipase
OBJECTIVE: Pigment epithelium-derived factor (PEDF) is an adipocyte-secreted factor involved in the development of insulin resistance in obesity. Previous studies have identified PEDF as a regulator of triacylglycerol metabolism in the liver that may act through adipose triglyceride lipase (ATGL). We used ATGL(-/-) mice to determine the role of PEDF in regulating lipid and glucose metabolism. RESEARCH DESIGN AND METHODS: Recombinant PEDF was administered to ATGL(-/-) and wild-type mice, and whole-body energy metabolism was studied by indirect calorimetry. Adipose tissue lipolysis and skeletal muscle fatty acid metabolism was determined in isolated tissue preparations. Muscle lipids were assessed by electrospray ionization-tandem mass spectrometry. Whole-body insulin sensitivity and skeletal muscle glucose uptake were assessed. RESULTS: PEDF impaired the capacity to adjust substrate selection, resulting in a delayed diurnal decline in the respiratory exchange ratio, and suppressed daily fatty acid oxidation. PEDF enhanced adipocyte lipolysis and triacylglycerol lipase activity in skeletal muscle. Muscle fatty acid uptake and storage were unaffected, whereas fatty acid oxidation was impaired. These changes in lipid metabolism were abrogated in ATGL(-/-) mice and were not attributable to hypothalamic actions. ATGL(-/-) mice were also refractory to PEDF-mediated insulin resistance, but this was not related to changes in lipid species in skeletal muscle. CONCLUSIONS: The results are the first direct demonstration that 1) PEDF influences systemic fatty acid metabolism by promoting lipolysis in an ATGL-dependent manner and reducing fatty acid oxidation and 2) ATGL is required for the negative effects of PEDF on insulin action
Hypoxia Negatively Regulates Antimetastatic PEDF in Melanoma Cells by a Hypoxia Inducible Factor-Independent, Autophagy Dependent Mechanism
Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (SERPIN) superfamily, displays a potent antiangiogenic and antimetastatic activity in a broad range of tumor types. Melanocytes and low aggressive melanoma cells secrete high levels of PEDF, while its expression is lost in highly aggressive melanomas. PEDF efficiently abrogates a number of functional properties critical for the acquisition of metastatic ability by melanoma cells, such as neovascularization, proliferation, migration, invasiveness and extravasation. In this study, we identify hypoxia as a relevant negative regulator of PEDF in melanocytes and low aggressive melanoma cells. PEDF was regulated at the protein level. Importantly, although downregulation of PEDF was induced by inhibition of 2-oxoglutarate-dependent dioxygenases, it was independent of the hypoxia inducible factor (HIF), a key mediator of the adaptation to hypoxia. Decreased PEDF protein was not mediated by inhibition of translation through untranslated regions (UTRs) in melanoma cells. Degradation by metalloproteinases, implicated on PEDF degradation in retinal pigment epithelial cells, or by the proteasome, was also excluded as regulatory mechanism in melanoma cells. Instead, we found that degradation by autophagy was critical for PEDF downregulation under hypoxia in human melanoma cells. Our findings show that hypoxic conditions encountered during primary melanoma growth downregulate antiangiogenic and antimetastasic PEDF by a posttranslational mechanism involving degradation by autophagy and could therefore contribute to the acquisition of highly metastatic potential characteristic of aggressive melanoma cells
Anti-tumor effect of adenovirus-mediated gene transfer of pigment epithelium-derived factor on mouse B16-F10 melanoma
<p>Abstract</p> <p>Background</p> <p>Angiogenesis plays an important role in tumor growth, invasion, and eventually metastasis. Antiangiogenic strategies have been proven to be a promising approach for clinical therapy for a variety of tumors. As a potent inhibitor of tumor angiogenesis, pigment epithelium-derived factor (PEDF) has recently been studied and used as an anticancer agent in several tumor models.</p> <p>Methods</p> <p>A recombined adenovirus carrying PEDF gene (Ad-PEDF) was prepared, and its expression by infected cells and in treated animals was confirmed with Western blotting and ELISA, respectively. Its activity for inhibiting human umbilical vein endothelial cell (HUVEC) proliferation was tested using the MTT assay. C57BL/6 mice bearing B16-F10 melanoma were treated with i.v. administration of 5 × 10<sup>8 </sup>IU/mouse Ad-PEDF, or 5 × 10<sup>8 </sup>IU/mouse Ad-Null, or normal saline (NS), every 3 days for a total of 4 times. Tumor volume and survival time were recorded. TUNEL, CD31 and H&E stainings of tumor tissue were conducted to examine apoptosis, microvessel density and histological morphology changes. Antiangiogenesis was determined by the alginate-encapsulated tumor cell assay.</p> <p>Results</p> <p>The recombinant PEDF adenovirus is able to transfer the PEDF gene to infected cells and successfully produce secretory PEDF protein, which exhibits potent inhibitory effects on HUVEC proliferation. Through inhibiting angiogenesis, reducing MVD and increasing apoptosis, Ad-PEDF treatment reduced tumor volume and prolonged survival times of mouse bearing B16-F10 melanoma.</p> <p>Conclusion</p> <p>Our data indicate that Ad-PEDF may provide an effective approach to inhibit mouse B16-F10 melanoma growth.</p
A chronic fatigue syndrome – related proteome in human cerebrospinal fluid
BACKGROUND: Chronic Fatigue Syndrome (CFS), Persian Gulf War Illness (PGI), and fibromyalgia are overlapping symptom complexes without objective markers or known pathophysiology. Neurological dysfunction is common. We assessed cerebrospinal fluid to find proteins that were differentially expressed in this CFS-spectrum of illnesses compared to control subjects. METHODS: Cerebrospinal fluid specimens from 10 CFS, 10 PGI, and 10 control subjects (50 μl/subject) were pooled into one sample per group (cohort 1). Cohort 2 of 12 control and 9 CFS subjects had their fluids (200 μl/subject) assessed individually. After trypsin digestion, peptides were analyzed by capillary chromatography, quadrupole-time-of-flight mass spectrometry, peptide sequencing, bioinformatic protein identification, and statistical analysis. RESULTS: Pooled CFS and PGI samples shared 20 proteins that were not detectable in the pooled control sample (cohort 1 CFS-related proteome). Multilogistic regression analysis (GLM) of cohort 2 detected 10 proteins that were shared by CFS individuals and the cohort 1 CFS-related proteome, but were not detected in control samples. Detection of ≥1 of a select set of 5 CFS-related proteins predicted CFS status with 80% concordance (logistic model). The proteins were α-1-macroglobulin, amyloid precursor-like protein 1, keratin 16, orosomucoid 2 and pigment epithelium-derived factor. Overall, 62 of 115 proteins were newly described. CONCLUSION: This pilot study detected an identical set of central nervous system, innate immune and amyloidogenic proteins in cerebrospinal fluids from two independent cohorts of subjects with overlapping CFS, PGI and fibromyalgia. Although syndrome names and definitions were different, the proteome and presumed pathological mechanism(s) may be shared
- …