6 research outputs found

    SLC31A1 Identifying a Novel Biomarker with Potential Prognostic and Immunotherapeutic Potential in Pan-Cancer

    No full text
    Solute carrier family 31 member 1 (SLC31A1) encodes a protein that functions as a homotrimer for the uptake of dietary copper. As a vital member of the cuproptosis gene family, it plays an essential role in both normal tissues and tumors. In this study, we analyzed SLC31A1 across human cancer types to gain a better understanding of SLC31A1’s role in cancer development. We searched for information using online databases to analyze, systematically and comprehensively, the role of SLC31A1 in tumors. Amongst nine cancer types, the expression of SLC31A1 was significantly different between tumors and normal tissues. According to further analysis, pancreatic cancer had the highest mutation rate of the SLC31A1 gene, and the methylation levels of the gene were significantly reduced in seven tumors. The expression of SLC31A1 is also linked to the infiltration of tumors by immune cells, the expression of immune checkpoint genes, and immunotherapy markers (TMB and MSI), suggesting that SLC31A1 may be of particular relevance in immunotherapy. This thorough analysis of SLC31A1 across different types of cancer gives us a clear and comprehensive insight into its role in causing cancer on a systemic level

    Structural and Functional Insights into the Roles of Potential Metal-Binding Sites in Apostichopus japonicus Ferritin

    No full text
    Ferritin is widely acknowledged as a conservative iron storage protein found in almost all living kingdoms. Apostichopus japonicus (Selenka) is among the oldest echinoderm fauna and has unique regenerative potential, but the catalytic mechanism of iron oxidation in A. japonicus ferritin (AjFER) remains elusive. We previously identified several potential metal-binding sites at the ferroxidase center, the three- and four-fold channels in AjFER. Herein, we prepared AjFER, AjFER-E25A/E60A/E105A, AjFER-D129A/E132A, and AjFER-E168A mutants, investigated their structures, and functionally characterized these ferritins with respect to Fe2+ uptake using X-ray techniques together with biochemical analytical methods. A crystallographic model of the AjFER-D129A/E132A mutant, which was solved to a resolution of 1.98 Å, suggested that the substitutions had a significant influence on the quaternary structure of the three-fold channel compared to that of AjFER. The structures of these ferritins in solution were determined based on the molecular envelopes of AjFER and its variants by small-angle X-ray scattering, and the structures were almost consistent with the characteristics of well-folded and globular-shaped proteins. Comparative biochemical analyses indicated that site-directed mutagenesis of metal-binding sites in AjFER presented relatively low rates of iron oxidation and thermostability, as well as weak iron-binding affinity, suggesting that these potential metal-binding sites play critical roles in the catalytic activity of ferritin. These findings provide profound insight into the structure–function relationships related to marine invertebrate ferritins
    corecore