420 research outputs found

    Dual-frequency VLBI study of Centaurus A on sub-parsec scales

    Get PDF
    Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-counterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Milliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of Cen A, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, which has been taken without contributing transoceanic baselines at somewhat lower resolution, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected gamma-rays from the core region by Fermi/LAT. We resolve the innermost structure of the milliarcsecond scale jet and counterjet system of Cen A into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify multiple possible sites as the origin of the high energy emission.Comment: 5 pages, 3 figures (1 color); A&A, accepte

    The 1997 hard state outburst of the X-ray transient GS 1354-64 / BW Cir

    Get PDF
    We present observations of the 1997 outburst of the X-ray transient GS 1354-64 (BW Cir) at X-ray, optical and, for the first time, radio wavelengths; this includes upper limits to the linear and circular polarisation of the radio data. The X-ray outburst was unusual in that the source remained in the low/hard X-ray state throughout; the X-ray peak was also preceded by at least one optical outburst, suggesting that it was an `outside-in' outburst - similar to those observed in dwarf novae systems, although possibly taking place on a viscous timescale in this case. It therefore indicates that the optical emission was not dominated by the reprocessing of X-rays but that instead we see the instability directly. While the radio source was too faint to detect any extended structure, spectral analysis of the radio data and a comparison with other similar systems suggests that mass ejections, probably in the form of a jet, took place and that the emitted synchrotron spectrum may have extended as far as infrared wavelengths. Finally, we compare this 1997 outburst of GS 1354-64 with possible previous outbursts and also with other hard state objects, both transient and persistent. It appears that a set of characteristics -- such as a weak, flat spectrum radio jet, a mHz QPO increasing in frequency, a surprisingly high optical:X-ray luminosity ratio and the observed optical peak preceding the X-ray peak -- may be common to all hard state X-ray transients.Comment: Accepted for publication in MNRA

    The first VLBI image of an Infrared-Faint Radio Source

    Get PDF
    Context: To investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.Comment: Accepted for publication in Astronomy and Astrophysics, 5 pages, needs aa.cl

    PKS 1018-42: A Powerful Kinetically Dominated Quasar

    Full text link
    We have identified PKS 1018-42 as a radio galaxy with extraordinarily powerful jets, over twice as powerful as any 3CR source of equal or lesser redshift except for one (3C196). It is perhaps the most intrinsically powerful extragalactic radio source in the, still poorly explored, Southern Hemisphere. PKS 1018-42 belongs to the class of FR II objects that are kinetically dominated, the jet kinetic luminosity, Q6.5×1046ergs/sQ \sim 6.5 \times 10^{46}\mathrm{ergs/s} (calculated at 151 MHz), is 3.4 times larger than the total thermal luminosity (IR to X-ray) of the accretion flow, Lbol1.9×1046ergs/sL_{bol} \sim 1.9 \times 10^{46}\mathrm{ergs/s}. It is the fourth most kinetically dominated quasar that we could verify from existing radio data. From a review of the literature, we find that kinetically dominated sources such as PKS 1018-42 are rare, and list the 5 most kinetically dominated sources found from our review. Our results for PKS 1018-42 are based on new observations from the Australia Telescope Compact Array.Comment: To appear in ApJ Letter

    The Commensal Real-time ASKAP Fast Transients (CRAFT) survey

    Get PDF
    We are developing a purely commensal survey experiment for fast (<5s) transient radio sources. Short-timescale transients are associated with the most energetic and brightest single events in the Universe. Our objective is to cover the enormous volume of transients parameter space made available by ASKAP, with an unprecedented combination of sensitivity and field of view. Fast timescale transients open new vistas on the physics of high brightness temperature emission, extreme states of matter and the physics of strong gravitational fields. In addition, the detection of extragalactic objects affords us an entirely new and extremely sensitive probe on the huge reservoir of baryons present in the IGM. We outline here our approach to the considerable challenge involved in detecting fast transients, particularly the development of hardware fast enough to dedisperse and search the ASKAP data stream at or near real-time rates. Through CRAFT, ASKAP will provide the testbed of many of the key technologies and survey modes proposed for high time resolution science with the SKA.Comment: accepted for publication in PAS

    VLBA monitoring of Mrk 421 at 15 GHz and 24 GHz during 2011

    Get PDF
    High-resolution radio observations are ideal for constraining the value of physical parameters in the inner regions of active-galactic-nucleus jets and complement results on multiwavelength (MWL) observations. This study is part of a wider multifrequency campaign targeting the nearby TeV blazar Markarian 421 (z=0.031), with observations in the sub-mm (SMA), optical/IR (GASP), UV/X-ray (Swift, RXTE, MAXI), and gamma rays (Fermi-LAT, MAGIC, VERITAS). We investigate the jet's morphology and any proper motions, and the time evolution of physical parameters such as flux densities and spectral index. The aim of our wider multifrequency campaign is to try to shed light on questions such as the nature of the radiating particles, the connection between the radio and gamma-ray emission, the location of the emitting regions and the origin of the flux variability. We consider data obtained with the Very Long Baseline Array (VLBA) over twelve epochs (one observation per month from January to December 2011) at 15 GHz and 24 GHz. We investigate the inner jet structure on parsec scales through the study of model-fit components for each epoch. The structure of Mrk 421 is dominated by a compact (~0.13 mas) and bright component, with a one-sided jet detected out to ~10 mas. We identify 5-6 components in the jet that are consistent with being stationary during the 12-month period studied here. Measurements of the spectral index agree with those of other works: they are fairly flat in the core region and steepen along the jet length. Significant flux-density variations are detected for the core component. From our results, we draw an overall scenario in which we estimate a viewing angle 2{\deg} < theta < 5{\deg} and a different jet velocity for the radio and the high-energy emission regions, such that the respective Doppler factors are {\delta}r ~3 and {\delta}h.e. ~14.Comment: 9 pages, 4 figure

    The Murchison Widefield Array Transients Survey (MWATS). A search for low frequency variability in a bright Southern hemisphere sample

    Get PDF
    We report on a search for low-frequency radio variability in 944 bright (> 4Jy at 154 MHz) unresolved, extragalactic radio sources monitored monthly for several years with the Murchison Widefield Array. In the majority of sources we find very low levels of variability with typical modulation indices < 5%. We detect 15 candidate low frequency variables that show significant long term variability (>2.8 years) with time-averaged modulation indices M = 3.1 - 7.1%. With 7/15 of these variable sources having peaked spectral energy distributions, and only 5.7% of the overall sample having peaked spectra, we find an increase in the prevalence of variability in this spectral class. We conclude that the variability seen in this survey is most probably a consequence of refractive interstellar scintillation and that these objects must have the majority of their flux density contained within angular diameters less than 50 milli-arcsec (which we support with multi-wavelength data). At 154 MHz we demonstrate that interstellar scintillation time-scales become long (~decades) and have low modulation indices, whilst synchrotron driven variability can only produce dynamic changes on time-scales of hundreds of years, with flux density changes less than one milli-jansky (without relativistic boosting). From this work we infer that the low frequency extra-galactic southern sky, as seen by SKA-Low, will be non-variable on time-scales shorter than one year.Comment: 19 pages, 11 figure

    TANAMI - Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry

    Full text link
    We present a summary of the observation strategy of TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry), a monitoring program to study the parsec-scale structure and dynamics of relativistic jets in active galactic nuclei (AGN) of the Southern Hemisphere with the Australian Long Baseline Array (LBA) and the trans-oceanic antennas Hartebeesthoek, TIGO, and O'Higgins. TANAMI is focusing on extragalactic sources south of -30 degrees declination with observations at 8.4 GHz and 22 GHz every ~2 months at milliarcsecond resolution. The initial TANAMI sample of 43 sources has been defined before the launch of the Fermi Gamma Ray Space Telescope to include the most promising candidates for bright gamma-ray emission to be detected with its Large Area Telescope (LAT). Since November 2008, we have been adding new sources to the sample, which now includes all known radio- and gamma-ray bright AGN of the Southern Hemisphere. The combination of VLBI and gamma-ray observations is crucial to understand the broadband emission characteristics of AGN and the nature of relativistic jets.Comment: Conference proceedings "2009 Fermi Symposium" eConf Proceedings C09112

    The star-formation rate in the host of GRB 990712

    Get PDF
    We have observed the host galaxy of GRB 990712 at 1.4 GHz with the Australia Telescope Compact Array, to obtain an estimate of its total star-formation rate. We do not detect a source at the position of the host. The 2 sigma upper limit of 70 microJy implies that the total star-formation rate is lower than 100 Msun/yr, using conservative values for the spectral index and cosmological parameters. This upper limit is in stark contrast with recent reports of radio/submillimeter-determined star-formation rates of roughly 500 Msun/yr for two other GRB host galaxies. Our observations present the deepest radio-determined star-formation rate limit on a GRB host galaxy yet, and show that also from the unobscured radio point-of-view, not every GRB host galaxy is a vigorous starburst.Comment: A&A Letters, in press, 5 pages; a high-resolution color gif version of the paper figure is also supplie

    The SKA Particle Array Prototype: The First Particle Detector at the Murchison Radio-astronomy Observatory

    Full text link
    We report on the design, deployment, and first results from a scintillation detector deployed at the Murchison Radio-astronomy Observatory (MRO). The detector is a prototype for a larger array -- the Square Kilometre Array Particle Array (SKAPA) -- planned to allow the radio-detection of cosmic rays with the Murchison Widefield Array and the low-frequency component of the Square Kilometre Array. The prototype design has been driven by stringent limits on radio emissions at the MRO, and to ensure survivability in a desert environment. Using data taken from Nov.\ 2018 to Feb.\ 2019, we characterize the detector response while accounting for the effects of temperature fluctuations, and calibrate the sensitivity of the prototype detector to through-going muons. This verifies the feasibility of cosmic ray detection at the MRO. We then estimate the required parameters of a planned array of eight such detectors to be used to trigger radio observations by the Murchison Widefield Array.Comment: 17 pages, 14 figures, 3 table
    corecore