152 research outputs found

    Reference frames during the acquisition and development of spatial memories

    Get PDF
    Four experiments investigated the role of reference frames during the acquisition and development of spatial knowledge, when learning occurs incrementally across views. In two experiments, participants learned overlapping spatial layouts. Layout 1 was first studied in isolation, and Layout 2 was later studied in the presence of Layout 1. The Layout 1 learning view was manipulated, whereas the Layout 2 view was held constant. Manipulation of the Layout 1 view influenced the reference frame used to organize Layout 2, indicating that reference frames established during early environmental exposure provided a framework for organizing locations learned later. Further experiments demonstrated that reference frames established after learning served to reorganize an existing spatial memory. These results indicate that existing reference frames can structure the acquisition of new spatial memories and that new reference frames can reorganize existing spatial memories

    Glycerol-induced hyperhydration

    Get PDF
    Maintenance of euhydration is essential for maximum work performance. Environments which induce hypohydration reduce plasma volume and cardiovascular performance progressively declines as does work capacity. Hyperhydration prior to exposure to dehydrating environments appears to be a potential countermeasure to the debilitating effects of hypohydration. The extravascular fluid space, being the largest fluid compartment in the body, is the most logical space by which significant hyperhydration can be accomplished. Volume and osmotic receptors in the vascular space result in physiological responses which counteract hyperhydration. Our hypothesis is that glycerol-induced hyperhydration (GIH) can accomplish extravascular fluid expansion because of the high solubility of glycerol in lipid and aqueous media. A hypertonic solution of glycerol is rapidly absorbed from the gastrointestinal tract, results in mild increases in plasma osmolality and is distributed to 65 percent of the body mass. A large volume of water ingested within minutes after glycerol intake results in increased total body water because of the osmotic action and distribution of glycerol. The resulting expanded extravascular fluid space can act as a reservoir to maintain plasma volume during exposure to dehydrating environments. The fluid shifts associated with exposure to microgravity result in increased urine production and is another example of an environment which induces hypohydration. Our goal is to demonstrate that GIH will facilitate maintenance of euhydration and cardiovascular performance during space flight and upon return to a 1 g environment

    Evolution of the Most Massive Galaxies to z=0.6: I. A New Method for Physical Parameter Estimation

    Full text link
    We use principal component analysis (PCA) to estimate stellar masses, mean stellar ages, star formation histories (SFHs), dust extinctions and stellar velocity dispersions for ~290,000 galaxies with stellar masses greater than $10^{11}Msun and redshifts in the range 0.4<z<0.7 from the Baryon Oscillation Spectroscopic Survey (BOSS). We find the fraction of galaxies with active star formation first declines with increasing stellar mass, but then flattens above a stellar mass of 10^{11.5}Msun at z~0.6. This is in striking contrast to z~0.1, where the fraction of galaxies with active star formation declines monotonically with stellar mass. At stellar masses of 10^{12}Msun, therefore, the evolution in the fraction of star-forming galaxies from z~0.6 to the present-day reaches a factor of ~10. When we stack the spectra of the most massive, star-forming galaxies at z~0.6, we find that half of their [OIII] emission is produced by AGNs. The black holes in these galaxies are accreting on average at ~0.01 the Eddington rate. To obtain these results, we use the stellar population synthesis models of Bruzual & Charlot (2003) to generate a library of model spectra with a broad range of SFHs, metallicities, dust extinctions and stellar velocity dispersions. The PCA is run on this library to identify its principal components over the rest-frame wavelength range 3700-5500A. We demonstrate that linear combinations of these components can recover information equivalent to traditional spectral indices such as the 4000A break strength and HdA, with greatly improved S/N. This method is able to recover physical parameters such as stellar mass-to-light ratio, mean stellar age, velocity dispersion and dust extinction from the relatively low S/N BOSS spectra. We examine the sensitivity of our stellar mass estimates to the input parameters in our model library and the different stellar population synthesis models.Comment: 20 pages, 18 Figures, submitted to MNRA

    UBVRI Light Curves of 44 Type Ia Supernovae

    Get PDF
    We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SN Ia to date, nearly doubling the number of well-observed, nearby SN Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SN Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U-B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ~40% intrinsic scatter compared to B-band.Comment: 84 authors, 71 pages, 51 tables, 10 figures. Accepted for publication in the Astronomical Journal. Version with high-res figures and electronic data at http://astron.berkeley.edu/~saurabh/cfa2snIa

    Cold, clumpy accretion onto an active supermassive black hole

    Get PDF
    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds - a departure from the "hot mode" accretion model - although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z=0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities can precipitate from this hot gas, producing a rain of cold clouds that fall toward the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that inhabits its core. The observations show that these cold clouds also fuel black hole accretion, revealing "shadows" cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole in the galaxy centre, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it

    Thermal Behavior of Benzoic Acid/Isonicotinamide Binary Cocrystals

    Get PDF
    YesA comprehensive study of the thermal behavior of the 1:1 and 2:1 benzoic acid/isonicotinamide cocrystals is reported. The 1:1 material shows a simple unit cell expansion followed by melting upon heating. The 2:1 crystal exhibits more complex behavior. Its unit cell first expands upon heating, as a result of C–H···π interactions being lengthened. It then is converted into the 1:1 crystal, as demonstrated by significant changes in its X-ray diffraction pattern. The loss of 1 equiv of benzoic acid is confirmed by thermogravimetric analysis–mass spectrometry. Hot stage microscopy confirms that, as intuitively expected, the transformation begins at the crystal surface. The temperature at which conversion occurs is highly dependent on the sample mass and geometry, being reduced when the sample is under a gas flow or has a greater exposed surface area but increased when the heating rate is elevated
    • …
    corecore