25 research outputs found

    Integrated genomics of susceptibility to alkylator-induced leukemia in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Therapy-related acute myeloid leukemia (t-AML) is a secondary, generally incurable, malignancy attributable to chemotherapy exposure. Although there is a genetic component to t-AML susceptibility in mice, the relevant loci and the mechanism(s) by which they contribute to t-AML are largely unknown. An improved understanding of susceptibility factors and the biological processes in which they act may lead to the development of t-AML prevention strategies.</p> <p>Results</p> <p>In this work we applied an integrated genomics strategy in inbred strains of mice to find novel factors that might contribute to susceptibility. We found that the pre-exposure transcriptional state of hematopoietic stem/progenitor cells predicts susceptibility status. More than 900 genes were differentially expressed between susceptible and resistant strains and were highly enriched in the apoptotic program, but it remained unclear which genes, if any, contribute directly to t-AML susceptibility. To address this issue, we integrated gene expression data with genetic information, including single nucleotide polymorphisms (SNPs) and DNA copy number variants (CNVs), to identify genetic networks underlying t-AML susceptibility. The 30 t-AML susceptibility networks we found are robust: they were validated in independent, previously published expression data, and different analytical methods converge on them. Further, the networks are enriched in genes involved in cell cycle and DNA repair (pathways not discovered in traditional differential expression analysis), suggesting that these processes contribute to t-AML susceptibility. Within these networks, the putative regulators (e.g., <it>Parp2</it>, <it>Casp9</it>, <it>Polr1b</it>) are the most likely to have a non-redundant role in the pathogenesis of t-AML. While identifying these networks, we found that current CNVR and SNP-based haplotype maps in mice represented distinct sources of genetic variation contributing to expression variation, implying that mapping studies utilizing either source alone will have reduced sensitivity.</p> <p>Conclusion</p> <p>The identification and prioritization of genes and networks not previously implicated in t-AML generates novel hypotheses on the biology and treatment of this disease that will be the focus of future research.</p

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    General Anesthetics in CAncer REsection Surgery (GA-CARES) randomized multicenter trial of propofol vs volatile inhalational anesthesia: protocol description

    No full text
    Abstract Background Studies indicate that patients can be “seeded” with their own cancer cells during oncologic surgery and that the immune response to these circulating cancer cells might influence the risk of cancer recurrence. Preliminary data from animal studies and some retrospective analyses suggest that anesthetic technique might affect the immune response during surgery and hence the risk of cancer recurrence. In 2015, experts called for prospective scientific inquiry into whether anesthetic technique used in cancer resection surgeries affects cancer-related outcomes such as recurrence and mortality. Therefore, we designed a pragmatic phase 3 multicenter randomized controlled trial (RCT) called General Anesthetics in Cancer Resection (GA-CARES). Methods After clinical trial registration and institutional review board approval, patients providing written informed consent were enrolled at five sites in New York (NY) State. Eligible patients were adults with known or suspected cancer undergoing one of eight oncologic surgeries having a high risk of cancer recurrence. Exclusion criteria included known or suspected history of malignant hyperthermia or hypersensitivity to either propofol or volatile anesthetic agents. Patients were randomized (1:1) stratified by center and surgery type using REDCap to receive either propofol or volatile agent for maintenance of general anesthesia (GA). This pragmatic trial, which seeks to assess the potential impact of anesthetic type in “real world practice”, did not standardize any aspect of patient care. However, potential confounders, e.g., use of neuroaxial anesthesia, were recorded to confirm the balance between study arms. Assuming a 5% absolute difference in 2-year overall survival rates (85% vs 90%) between study arms (primary endpoint, minimum 2-year follow-up), power using a two-sided log-rank test with type I error of 0.05 (no planned interim analyses) was calculated to be 97.4% based on a target enrollment of 1800 subjects. Data sources include the National Death Index (gold standard for vital status in the USA), NY Cancer Registry, and electronic harvesting of data from electronic medical records (EMR), with minimal manual data abstraction/data entry. Discussion Enrollment has been completed (n = 1804) and the study is in the follow-up phase. This unfunded, pragmatic trial, uses a novel approach for data collection focusing on electronic sources. Trial registration Registered (NCT03034096) on January 27, 2017, prior to consent of the first patient on January 31, 2017

    Laparoscopic appendectomy in children with perforated appendicitis

    No full text
    Purpose: There is persistent controversy regarding the optimal surgical therapy for children with appendicitis. We have recently adopted laparoscopic appendectomy in lieu of the open technique for children with perforated appendicitis. We hypothesized that laparoscopic appendectomy would be as effective as open appendectomy in preventing postoperative complications. Materials and Methods: We reviewed the medical records of children admitted to our hospital over a 5-year period with the diagnosis of perforated appendicitis. Patients were divided into two groups based on the operative approach: laparoscopic vs. open appendectomy. Demographic data, duration of presenting symptoms, initial white blood cell (WBC) count, length of stay, and complications were abstracted. Data were compared using appropriate statistical analyses. Results: There was no difference between the laparoscopic (n = 43) and open (n = 77) groups with respect to gender, duration of presenting symptoms, initial WBC, or length of stay. However, patients in the laparoscopic group had a significantly lower complication rate than those in the open group (6/43 vs. 23/77, P = 0.05). Infectious complications were no different between groups. Patients in the laparoscopic group tended to be older than patients in the open group (10.6 ± 3.3 years vs. 8.5 ± 4.1 years, P = 0.003). Conclusion: Laparoscopic appendectomy for children with perforated appendicitis has the same infectious complication rate and a lower overall complication rate than open appendectomy. A prospective study with standardized postoperative care would be needed to determine whether laparoscopic appendectomy for children with perforated appendicitis is the treatment of choice, but until then it remains an attractive alternative. © Mary Ann Liebert, Inc

    The Conservative Party Leadership Election of 1997: An Analysis of the Voting Motivations of Conservative Parliamentarians

    No full text
    This paper examines the voting motivations of Conservative parliamentarians in the final ballot of the Conservative Party leadership election of 1997. Conservative parliamentarians had a clear choice between the political characteristics and the ideological disposition of the candidates. Should they endorse a senior, experienced and electorally attractive candidate, Kenneth Clarke, or a junior, inexperienced and less electorally attractive candidate, William Hague? and should they endorse the socially liberal, economic damp, and Europhile Clarke or the socially conservative, economic and Eurosceptic Hague? By constructing a data set of the voting behaviour of Conservative parliamentarians in the final party leadership ballot, this paper seeks, through the use of bivariate analysis, to test a series of hypotheses relating to the political characteristics and ideological disposition of the candidates vis-à-vis their electorate. The paper demonstrates that attitudes to the European ideological divide alone do not fully explain the rejection of Clarke and the endorsement of Hague. The paper concludes that ideological disposition was a key determinant of voting behaviour across all three of the ideological determinants of post-Thatcherite Conservatism (i.e. the social, sexual and morality policy divide, the economic policy divide and the European policy divide). Moreover, it confirms that ideology was not the sole determinant of voting behaviour; the political characteristics of age and parliamentary experience were significant in explaining how a youthful, inexperienced, Thatcherite Eurosceptic secured the party leadership
    corecore