111 research outputs found
Genome Sequence of the Endosymbiont Rickettsia peacockii and Comparison with Virulent Rickettsia rickettsii: Identification of Virulence Factors
Rickettsia peacockii, also known as the East Side Agent, is a non-pathogenic obligate intracellular bacterium found as an endosymbiont in Dermacentor andersoni ticks in the western USA and Canada. Its presence in ticks is correlated with reduced prevalence of Rickettsia rickettsii, the agent of Rocky Mountain Spotted Fever. It has been proposed that a virulent SFG rickettsia underwent changes to become the East Side Agent. We determined the genome sequence of R. peacockii and provide a comparison to a closely related virulent R. rickettsii. The presence of 42 chromosomal copies of the ISRpe1 transposon in the genome of R. peacockii is associated with a lack of synteny with the genome of R. rickettsii and numerous deletions via recombination between transposon copies. The plasmid contains a number of genes from distantly related organisms, such as part of the glycosylation island of Pseudomonas aeruginosa. Genes deleted or mutated in R. peacockii which may relate to loss of virulence include those coding for an ankyrin repeat containing protein, DsbA, RickA, protease II, OmpA, ScaI, and a putative phosphoethanolamine transferase. The gene coding for the ankyrin repeat containing protein is especially implicated as it is mutated in R. rickettsii strain Iowa, which has attenuated virulence. Presence of numerous copies of the ISRpe1 transposon, likely acquired by lateral transfer from a Cardinium species, are associated with extensive genomic reorganization and deletions. The deletion and mutation of genes possibly involved in loss of virulence have been identified by this genomic comparison. It also illustrates that the introduction of a transposon into the genome can have varied effects; either correlating with an increase in pathogenicity as in Francisella tularensis or a loss of pathogenicity as in R. peacockii and the recombination enabled by multiple transposon copies can cause significant deletions in some genomes while not in others
Rickettsial ompB Promoter Regulated Expression of GFPuv in Transformed Rickettsia montanensis
Background: Rickettsia spp. (Rickettsiales: Rickettsiaceae) are Gram-negative, obligate intracellular, a-proteobacteria that have historically been associated with blood-feeding arthropods. Certain species cause typhus and spotted fevers in humans, but others are of uncertain pathogenicity or may be strict arthropod endosymbionts. Genetic manipulation of rickettsiae should facilitate a better understanding of their interactions with hosts. Methodology/Principal Findings: We transformed a species never associated with human disease, Rickettsia montanensis, by electroporation with a TN5 transposon (pMOD700) containing green fluorescent protein (GFPuv) and chloramphenicol acetyltransferase (CAT) genes under regulation of promoters cloned from the Rickettsia rickettsii ompB gene, and isolated a Chloramphenicol-resistant GFP-fluorescent rickettsiae population (Rmontanensis700). The Rmontanensis700 rickettsiae contained a single transposon integrated near an acetyl-CoA acetyltransferase gene in the rickettsial chromosome. Northern blots showed that GFPuv and CAT mRNAs were both expressed as two transcripts of larger and smaller than predicted length. Western immunoblots showed that Rmontanensis700 and E. coli transformed with a plasmid containing the pMOD700 transposon both expressed GFPuv proteins of the predicted molecular weight. Conclusions/Significance: Long-standing barriers to transformation of rickettsiae have been overcome by development of transposon-based rickettsial transformation vectors. The ompB promoter may be the most problematic of the fou
Development of Shuttle Vectors for Transformation of Diverse Rickettsia Species
Plasmids have been identified in most species of Rickettsia examined, with some species maintaining multiple different plasmids. Three distinct plasmids were demonstrated in Rickettsia amblyommii AaR/SC by Southern analysis using plasmid specific probes. Copy numbers of pRAM18, pRAM23 and pRAM32 per chromosome in AaR/SC were estimated by real-time PCR to be 2.0, 1.9 and 1.3 respectively. Cloning and sequencing of R. amblyommii AaR/SC plasmids provided an opportunity to develop shuttle vectors for transformation of rickettsiae. A selection cassette encoding rifampin resistance and a fluorescent marker was inserted into pRAM18 yielding a 27.6 kbp recombinant plasmid, pRAM18/Rif/GFPuv. Electroporation of Rickettsia parkeri and Rickettsia bellii with pRAM18/Rif/GFPuv yielded GFPuv-expressing rickettsiae within 2 weeks. Smaller vectors, pRAM18dRG, pRAM18dRGA and pRAM32dRGA each bearing the same selection cassette, were made by moving the parA and dnaA-like genes from pRAM18 or pRAM32 into a vector backbone. R. bellii maintained the highest numbers of pRAM18dRGA (13.3 – 28.1 copies), and R. parkeri, Rickettsia monacensis and Rickettsia montanensis contained 9.9, 5.5 and 7.5 copies respectively. The same species transformed with pRAM32dRGA maintained 2.6, 2.5, 3.2 and 3.6 copies. pRM, the plasmid native to R. monacensis, was still present in shuttle vector transformed R. monacensis at a level similar to that found in wild type R. monacensis after 15 subcultures. Stable transformation of diverse rickettsiae was achieved with a shuttle vector system based on R. amblyommii plasmids pRAM18 and pRAM32, providing a new research tool that will greatly facilitate genetic and biological studies of rickettsiae
Establishment of a Replicating Plasmid in Rickettsia prowazekii
Rickettsia prowazekii, the causative agent of epidemic typhus, grows only within the cytosol of eukaryotic host cells. This obligate intracellular lifestyle has restricted the genetic analysis of this pathogen and critical tools, such as replicating plasmid vectors, have not been developed for this species. Although replicating plasmids have not been reported in R. prowazekii, the existence of well-characterized plasmids in several less pathogenic rickettsial species provides an opportunity to expand the genetic systems available for the study of this human pathogen. Competent R. prowazekii were transformed with pRAM18dRGA, a 10.3 kb vector derived from pRAM18 of R. amblyommii. A plasmid-containing population of R. prowazekii was obtained following growth under antibiotic selection, and the rickettsial plasmid was maintained extrachromosomally throughout multiple passages. The transformant population exhibited a generation time comparable to that of the wild type strain with a copy number of approximately 1 plasmid per rickettsia. These results demonstrate for the first time that a plasmid can be maintained in R. prowazekii, providing an important genetic tool for the study of this obligate intracellular pathogen
Genomic Insights Into The Ixodes scapularis Tick Vector Of Lyme Disease
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retrotransposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing B57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing’, prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent
Genomic Insights Into The Ixodes scapularis Tick Vector Of Lyme Disease
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retrotransposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing B57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing’, prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent
Expression of proteins in AmE-711 cells at different temperatures.
<p>The AmE-711 line had been transferred 12 times and incubated for 7 days at different temperatures. Mean total protein per unit surface area of tube substrate (cm<sup>2</sup>) was determined from 3 replicate cultures per temperature using a Bradford assay. Baseline data represent the amount of protein in cells from 3 replicate cultures harvested within 24 h after inoculation. All cultures were run in triplicate and the data were normalized against a reagent blank (0.5 N NaOH) and BSA standard curve. Mean total protein was significantly different between cultures grown at different temperatures (<i>F</i><sub>4,10</sub>=16.00, <i>p</i>=0.0002). Columns with different letters are significantly different by Tukey’s HSD (α = 0.05).</p
Distribution of chromosomes of AmE-711 cells.
<p>The AmE-711 line had been transferred 8 times. A total of 126 metaphase spreads were counted. Haploid, diploid, and tetraploid conditions are demarcated by n, 2n, and 4n, respectively. Chromosome counts greater than 64 (4n) were considered as polyploid.</p
- …