122 research outputs found

    Implications of dimeric activation of PDE6 for rod phototransduction

    Get PDF
    We examine the implications of a recent report providing evidence that two transducins must bind to the rod phosphodiesterase to elicit significant hydrolytic activity. To predict the rod photoreceptor's electrical response, we use numerical simulation of the two-dimensional diffusional contact of interacting molecules at the surface of the disc membrane, and then we use the simulated PDE activity as the driving function for the downstream reaction cascade. The results account for a number of aspects of rod phototransduction that have previously been puzzling. For example, they explain the existence of a greater initial delay in rods than in cones. Furthermore, our analysis suggests that the ‘continuous’ noise recorded in rods in darkness is likely to arise from spontaneous activation of individual molecules of PDE at a rate of a few tens per second per rod, probably as a consequence of spontaneous activation of transducins at a rate of thousands per second per rod. Hence, the dimeric activation of PDE in rods provides immunity against spontaneous transducin activation, thereby reducing the continuous noise. Our analysis also provides a coherent quantitative explanation of the amplification underlying the single photon response. Overall, numerical analysis of the dimeric activation of PDE places rod phototransduction in a new light.This work was supported by award no. R01EY023603 fromthe US National Eye Institut

    Short-term impacts of salinity pulses on ionic ratios of the seagrasses Thalassia testudinum and Halodule wrightii

    Get PDF
    We examined the effects of short-term salinity pulses on ion accumulation in the seagrasses Thalassia testudinum and Halodule wrightii. Plant fragments were exposed for approximately 1 week to 10, 23 (ambient salinity), 30, 40, 50 and 70 psu. The concentrations of total ions, Cl− and Na+ increased with higher salinity in leaves and rhizomes of both seagrass species. In contrast, the concentrations of K+ and Ca2+ generally decreased with higher salinity, although the decrease was relatively small and only observed at extreme salinities. Our results indicate the concentrations of Cl− and Na+ were higher in rhizomes than in leaves, possibly reflecting effective ion exclusion mechanisms in leaves. Under ambient (control) salinity the ratios K+/Na+ and Ca2+/Na+ were 38% and 46% higher in H. wrightii than in T. testudinum leaves, which support the notion that H. wrightii is more tolerant of salinity increases than T. testudinum. In concert, our results show novel observations of ion osmolyte concentrations in these seagrass species that point to adaptive responses to salinity pulses. Despite these adaptive responses, pulses of extremely high salinity (>50 psu) lasting approximately 1 week are detrimental to these seagrass species.This research was financed by a grant of University of Alicante

    Ubiquitylation of the ER-Shaping Protein Lunapark via the CRL3KLHL12 Ubiquitin Ligase Complex

    Get PDF
    Summary: Cullin-RING ligases (CRLs) control key cellular processes by promoting ubiquitylation of a multitude of soluble cytosolic and nuclear proteins. Subsets of CRL complexes are recruited and activated locally at cellular membranes; however, few CRL functions and substrates at these distinct cellular compartments are known. Here, we use a proteomic screen to identify proteins that are ubiquitylated at cellular membranes and found that Lunapark, an endoplasmic reticulum (ER)-shaping protein localized to ER three-way junctions, is ubiquitylated by the CRL3KLHL12 ubiquitin ligase. We demonstrate that Lunapark interacts with mechanistic target of rapamycin complex-1 (mTORC1), a central cellular regulator that coordinates growth and metabolism with environmental conditions. We show that mTORC1 binds Lunapark specifically at three-way junctions, and lysosomes, where mTORC1 is activated, make contact with three-way junctions where Lunapark resides. Inhibition of Lunapark ubiquitylation results in neurodevelopmental defects indicating that KLHL12-dependent ubiquitylation of Lunapark is required for normal growth and development

    Renewable energy resource assessment

    Full text link
    © The Author(s) 2019. Literature overview of published global and regional renewable energy potential estimates. This section provides definitions for different types of RE potentials and introduces a new category, the economic renewable energy potential in space constrained environments. The potential for utility scale solar and onshore wind in square kilometre and maximum possible installed capacity (in GW) are provided for 75 different regions. The results set the upper limits for the deployment of solar- and wind technologies for the development of the 2.0 °C and 1.5 °C energy pathways

    Importance of carbon-nitrogen interactions and ozone on ecosystem hydrology during the 21st century

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): G01020, doi:10.1029/2008JG000826.There is evidence that increasing CO2 concentrations have reduced evapotranspiration and increased runoff through reductions in stomatal conductance during the twentieth century. While this process will continue to counteract increased evapotranspiration associated with future warming, it is highly dependent upon concurrent changes in photosynthesis, especially due to CO2 fertilization, nitrogen limitation, and ozone exposure. A new version of the Terrestrial Ecosystem Model (TEM-Hydro) was developed to examine the effects of carbon and nitrogen on the water cycle. We used two climate models (NCAR CCSM3 and DOE PCM) and two emissions scenarios (SRES B1 and A2) to examine the effects of climate, elevated CO2, nitrogen limitation, and ozone exposure on the hydrological cycle in the eastern United States. While the direction of future runoff changes is largely dependent upon predicted precipitation changes, the effects of elevated CO2 on ecosystem function (stomatal closure and CO2 fertilization) increase runoff by 3–7%, as compared to the effects of climate alone. Consideration of nitrogen limitation and ozone damage on photosynthesis increases runoff by a further 6–11%. Failure to consider the effects of the interactions among nitrogen, ozone, and elevated CO2 may lead to significant regional underestimates of future runoff.This study was funded by the Interdisciplinary Science Program of the U.S. National Aeronautics and Space Administration (NNG04GJ80G, NNG04GM39G), the Dynamic Global Economic Modeling of Greenhouse Gas Emissions and Mitigation from Land-Use Activities of the U.S. Environmental Protection Agency (XA-83240101), and the Nonlinear Response to Global Change in Linked Aquatic and Terrestrial Ecosystems of the U.S. EPA (XA-83326101)
    • 

    corecore