261 research outputs found

    CCN1 mutation is associated with atrial septal defect

    Get PDF
    The genetic basis of congenital heart disease remains unknown in most of the cases. Recently, a novel mouse model shed new light on the role of CCN1/CYR61, a matricellular regulatory factor, in cardiac morphogenesis. In a candidate gene approach, we analyzed a cohort of 143 patients with atrial septal defects (ASD) by sequencing the coding exons of CCN1. In addition to three frequent polymorphisms, we identified an extremely rare novel heterozygous missense mutation (c.139C > T; p.R47W) in one patient with severe ASD. The mutation leads to an exchange of residues with quite different properties in a highly conserved position of the N-terminal insulin-like growth factor binding protein module. Further bioinformatic analysis, exclusion of known ASD disease genes as well as the exclusion of the mutation in a very high number of ethnically matched controls (more than 1,000 individuals) and in public genetic databases, indicates that the p.R47W variant is a probable disease-associated mutation. The report about ASD in mice in heterozygous Ccn 1 +/- animals strongly supports this notion. Our study is the first to suggest a relationship between a probable CCN1 mutation and ASD. Our purpose here was to draw attention to CCN1, a gene that we believe may be important for genetic analysis in patients with congenital heart disease

    Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms.

    Get PDF
    OBJECTIVE: To identify factors that determine disease severity and clinical phenotype of the most common spinocerebellar ataxias (SCAs), we studied 526 patients with SCA1, SCA2, SCA3. or SCA6. METHODS: To measure the severity of ataxia we used the Scale for the Assessment and Rating of Ataxia (SARA). In addition, nonataxia symptoms were assessed with the Inventory of Non-Ataxia Symptoms (INAS). The INAS count denotes the number of nonataxia symptoms in each patient. RESULTS: An analysis of covariance with SARA score as dependent variable and repeat lengths of the expanded and normal allele, age at onset, and disease duration as independent variables led to multivariate models that explained 60.4% of the SARA score variance in SCA1, 45.4% in SCA2, 46.8% in SCA3, and 33.7% in SCA6. In SCA1, SCA2, and SCA3, SARA was mainly determined by repeat length of the expanded allele, age at onset, and disease duration. The only factors determining the SARA score in SCA6 were age at onset and disease duration. The INAS count was 5.0 +/- 2.3 in SCA1, 4.6 +/- 2.2 in SCA2, 5.2 +/- 2.5 in SCA3, and 2.0 +/- 1.7 in SCA6. In SCA1, SCA2, and SCA3, SARA score and disease duration were the strongest predictors of the INAS count. In SCA6, only age at onset and disease duration had an effect on the INAS count. CONCLUSIONS: Our study suggests that spinocerebellar ataxia (SCA) 1, SCA2, and SCA3 share a number of common biologic properties, whereas SCA6 is distinct in that its phenotype is more determined by age than by disease-related factors

    Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6.

    Get PDF
    Abstract: Onset of genetically determined neurodegenerative diseases is difficult to specify because of their insidious and slowly progressive nature. This is especially true for spinocerebellar ataxia (SCA) because of varying affection of many parts of the nervous system and huge variability of symptoms. We investigated early symptoms in 287 patients with SCA1, SCA2, SCA3, or SCA6 and calculated the influence of CAG repeat length on age of onset depending on (1) the definition of disease onset, (2) people defining onset, and (3) duration of symptoms. Gait difficulty was the initial symptom in two-thirds of patients. Double vision, dysarthria, impaired hand writing, and episodic vertigo preceded ataxia in 4% of patients, respectively. Frequency of other early symptoms did not differ from controls and was regarded unspecific. Data about disease onset varied between patients and relatives for 1 year or more in 44% of cases. Influence of repeat length on age of onset was maximum when onset was defined as beginning of permanent gait disturbance and cases with symptoms for more than 10 years were excluded. Under these conditions, CAG repeat length determined 64% of onset variability in SCA1, 67% in SCA2, 46% in SCA3, and 41% in SCA6 demonstrating substantial influence of nonrepeat factors on disease onset in all SCA subtypes. Identification of these factors is of interest as potential targets for disease modifying compounds. In this respect, recognition of early symptoms that develop before onset of ataxia is mandatory to determine the shift from presymptomatic to affected status in SCA

    A −436C>A Polymorphism in the Human FAS Gene Promoter Associated with Severe Childhood Malaria

    Get PDF
    Human genetics and immune responses are considered to critically influence the outcome of malaria infections including life-threatening syndromes caused by Plasmodium falciparum. An important role in immune regulation is assigned to the apoptosis-signaling cell surface receptor CD95 (Fas, APO-1), encoded by the gene FAS. Here, a candidate-gene association study including variant discovery at the FAS gene locus was carried out in a case-control group comprising 1,195 pediatric cases of severe falciparum malaria and 769 unaffected controls from a region highly endemic for malaria in Ghana, West Africa. We found the A allele of c.−436C>A (rs9658676) located in the promoter region of FAS to be significantly associated with protection from severe childhood malaria (odds ratio 0.71, 95% confidence interval 0.58–0.88, pempirical = 0.02) and confirmed this finding in a replication group of 1,412 additional severe malaria cases and 2,659 community controls from the same geographic area. The combined analysis resulted in an odds ratio of 0.71 (95% confidence interval 0.62–0.80, p = 1.8×10−7, n = 6035). The association applied to c.−436AA homozygotes (odds ratio 0.47, 95% confidence interval 0.36–0.60) and to a lesser extent to c.−436AC heterozygotes (odds ratio 0.73, 95% confidence interval 0.63–0.84), and also to all phenotypic subgroups studied, including severe malaria anemia, cerebral malaria, and other malaria complications. Quantitative FACS analyses assessing CD95 surface expression of peripheral blood mononuclear cells of naïve donors showed a significantly higher proportion of CD69+CD95+ cells among persons homozygous for the protective A allele compared to AC heterozygotes and CC homozygotes, indicating a functional role of the associated CD95 variant, possibly in supporting lymphocyte apoptosis

    Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.

    Get PDF
    Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification

    Visuomotor adaptive improvement and aftereffects are impaired differentially following cerebellar lesions in SCA and PICA territory

    Get PDF
    The aim of the present study was to elucidate the contribution of the superior and posterior inferior cerebellum to adaptive improvement and aftereffects in a visuomotor adaptation task. Nine patients with ischemic lesions within the territory of the posterior inferior cerebellar artery (PICA), six patients with ischemic lesions within the territory of the superior cerebellar artery (SCA) and 17 age-matched controls participated. All subjects performed center-out reaching movements under 60° rotation of visual feedback. For the assessment of aftereffects, we tested retention of adaptation and de-adaptation under 0° visual rotation. From this data we also quantified five measures of motor performance. Cerebellar lesion-symptom mapping was performed using magnetic resonance imaging subtraction analysis. Adaptive improvement during 60° rotation was significantly degraded in PICA patients and even more in SCA patients. Subtraction analysis revealed that posterior (Crus I) as well as anterior cerebellar regions (lobule V) showed a common overlap related to deficits in adaptive improvement. However, for aftereffect measures as well as for motor performance variables only SCA patients, but not PICA patients showed significant differences to control subjects. Subtraction analysis showed that affection of lobules V and VI were more common in patients with impaired retention and de-adaptation, respectively. Data shows that areas both within the superior and posterior inferior cerebellum are involved in adaptive improvement. However, only the superior cerebellum including lobules V and VI appears to be important for aftereffects and therefore true adaptive ability

    Brain Structure and Degeneration Staging in Friedreich Ataxia: Magnetic Resonance Imaging Volumetrics from the ENIGMA-Ataxia Working Group

    Get PDF
    open48siThe method harmonization and multisite data analysis elements of this work were supported by the NIH BD2K (Big Data to Knowledge) program (grant U54 EB020403) and the Australian National Health and Medical Research Council (fellowship 1106533, grant 1184403).Objective: Friedreich ataxia (FRDA) is an inherited neurological disease defined by progressive movement incoordination. We undertook a comprehensive characterization of the spatial profile and progressive evolution of structural brain abnormalities in people with FRDA. Methods: A coordinated international analysis of regional brain volume using magnetic resonance imaging data charted the whole-brain profile, interindividual variability, and temporal staging of structural brain differences in 248 individuals with FRDA and 262 healthy controls. Results: The brainstem, dentate nucleus region, and superior and inferior cerebellar peduncles showed the greatest reductions in volume relative to controls (Cohen d = 1.5–2.6). Cerebellar gray matter alterations were most pronounced in lobules I–VI (d = 0.8), whereas cerebral differences occurred most prominently in precentral gyri (d = 0.6) and corticospinal tracts (d = 1.4). Earlier onset age predicted less volume in the motor cerebellum (rmax = 0.35) and peduncles (rmax = 0.36). Disease duration and severity correlated with volume deficits in the dentate nucleus region, brainstem, and superior/inferior cerebellar peduncles (rmax = −0.49); subgrouping showed these to be robust and early features of FRDA, and strong candidates for further biomarker validation. Cerebral white matter abnormalities, particularly in corticospinal pathways, emerge as intermediate disease features. Cerebellar and cerebral gray matter loss, principally targeting motor and sensory systems, preferentially manifests later in the disease course. Interpretation: FRDA is defined by an evolving spatial profile of neuroanatomical changes beyond primary pathology in the cerebellum and spinal cord, in line with its progressive clinical course. The design, interpretation, and generalization of research studies and clinical trials must consider neuroanatomical staging and associated interindividual variability in brain measures. ANN NEUROL 2021;90:570–583.openHarding I.H.; Chopra S.; Arrigoni F.; Boesch S.; Brunetti A.; Cocozza S.; Corben L.A.; Deistung A.; Delatycki M.; Diciotti S.; Dogan I.; Evangelisti S.; Franca M.C.; Goricke S.L.; Georgiou-Karistianis N.; Gramegna L.L.; Henry P.-G.; Hernandez-Castillo C.R.; Hutter D.; Jahanshad N.; Joers J.M.; Lenglet C.; Lodi R.; Manners D.N.; Martinez A.R.M.; Martinuzzi A.; Marzi C.; Mascalchi M.; Nachbauer W.; Pane C.; Peruzzo D.; Pisharady P.K.; Pontillo G.; Reetz K.; Rezende T.J.R.; Romanzetti S.; Sacca F.; Scherfler C.; Schulz J.B.; Stefani A.; Testa C.; Thomopoulos S.I.; Timmann D.; Tirelli S.; Tonon C.; Vavla M.; Egan G.F.; Thompson P.M.Harding I.H.; Chopra S.; Arrigoni F.; Boesch S.; Brunetti A.; Cocozza S.; Corben L.A.; Deistung A.; Delatycki M.; Diciotti S.; Dogan I.; Evangelisti S.; Franca M.C.; Goricke S.L.; Georgiou-Karistianis N.; Gramegna L.L.; Henry P.-G.; Hernandez-Castillo C.R.; Hutter D.; Jahanshad N.; Joers J.M.; Lenglet C.; Lodi R.; Manners D.N.; Martinez A.R.M.; Martinuzzi A.; Marzi C.; Mascalchi M.; Nachbauer W.; Pane C.; Peruzzo D.; Pisharady P.K.; Pontillo G.; Reetz K.; Rezende T.J.R.; Romanzetti S.; Sacca F.; Scherfler C.; Schulz J.B.; Stefani A.; Testa C.; Thomopoulos S.I.; Timmann D.; Tirelli S.; Tonon C.; Vavla M.; Egan G.F.; Thompson P.M

    Differential Temporal Dynamics of Axial and Appendicular Ataxia in SCA3

    Get PDF
    Background: Disease severity in spinocerebellar ataxia type 3 (SCA3) is commonly defined by the Scale for the Assessment and Rating of Ataxia (SARA) sum score, but little is known about the contributions and progression patterns of individual items. Objectives: To investigate the temporal dynamics of SARA item scores in SCA3 patients and evaluate if clinical and demographic factors are differentially associated with evolution of axial and appendicular ataxia. Methods: In a prospective, multinational cohort study involving 11 European and 2 US sites, SARA scores were determined longitudinally in 223 SCA3 patients with a follow-up assessment after 1 year. Results: An increase in SARA score from 10 to 20 points was mainly driven by axial and speech items, with a markedly smaller contribution of appendicular items. Finger chase and nose-finger test scores not only showed the lowest variability at baseline, but also the least deterioration at follow-up. Compared with the full set of SARA items, omission of both tests would result in lower sample size requirements for therapeutic trials. Sex was associated with change in SARA sum score and appendicular, but not axial, subscore, with a significantly faster progression in men. Despite considerable interindividual variability, the average annual progression rate of SARA score was approximately three times higher in subjects with a disease duration over 10 years than in those within 10 years from onset. Conclusion: Our findings provide evidence for a difference in temporal dynamics between axial and appendicular ataxia in SCA3 patients, which will help inform the design of clinical trials and development of new (etiology-specific) outcome measures. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Funding agencies: This publication is an outcome of ESMI, an EU Joint Programme — Neurodegenerative Disease Research (JPND) Project (www.jpnd.eu). The project is supported through the following funding organizations under the aegis of JPND: Germany, Federal Ministry of Education and Research (BMBF; funding codes 01ED1602A/B); Netherlands, The Netherlands Organization for Health Research and Development; Portugal, Foundation for Science and Technology and Regional Fund for Science and Technology of the Azores; United Kingdom, Medical Research Council. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 643417. At the United States sites this work was in part supported by the National Ataxia Foundation.Spinocerebellar ataxia type 3Natural historyScale for the Assessment and Rating of AtaxiaDisease progressio
    • 

    corecore