221 research outputs found

    Evidence for Hox-specified positional identities in adult vasculature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The concept of specifying positional information in the adult cardiovascular system is largely unexplored. While the <it>Hox </it>transcriptional regulators have to be viewed as excellent candidates for assuming such a role, little is known about their presumptive cardiovascular control functions and <it>in vivo </it>expression patterns.</p> <p>Results</p> <p>We demonstrate that conventional reporter gene analysis in transgenic mice is a useful approach for defining highly complex <it>Hox </it>expression patterns in the adult vascular network as exemplified by our <it>lacZ </it>reporter gene models for <it>Hoxa3 </it>and <it>Hoxc11</it>. These mice revealed expression in subsets of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) located in distinct regions of the vasculature that roughly correspond to the embryonic expression domains of the two genes. These reporter gene patterns were validated as authentic indicators of endogenous gene expression by immunolabeling and PCR analysis. Furthermore, we show that persistent reporter gene expression in cultured cells derived from vessel explants facilitates <it>in vitro </it>characterization of phenotypic properties as exemplified by the differential response of <it>Hoxc11-lacZ</it>-positive <it>versus</it>-negative cells in migration assays and to serum.</p> <p>Conclusion</p> <p>The data support a conceptual model of <it>Hox-</it>specified positional identities in adult blood vessels, which is of likely relevance for understanding the mechanisms underlying regional physiological diversities in the cardiovascular system. The data also demonstrate that conventional <it>Hox </it>reporter gene mice are useful tools for visualizing complex <it>Hox </it>expression patterns in the vascular network that might be unattainable otherwise. Finally, these mice are a resource for the isolation and phenotypic characterization of specific subpopulations of vascular cells marked by distinct <it>Hox </it>expression profiles.</p

    Wt1 haploinsufficiency induces browning of epididymal fat and alleviates metabolic dysfunction in mice on high-fat diet

    Get PDF
    Aims/hypothesis: Despite a similar fat storing function, visceral (infra-abdominal) white adipose tissue (WAT) is detrimental, whereas subcutaneous WAT is considered to protect against metabolic disease. Recent findings indicate that thermogenic genes, expressed in brown adipose tissue (BAT), can be induced primarily in subcutaneous WAT. Here, we investigate the hypothesis that the Wilms tumour gene product (WT1), which is expressed in intra-abdominal WAT but not in subcutaneous WAT and BAT, suppresses a thennogenic program in white fat cells. Methods: Heterozygous Wt1 knockout mice and their wild-type littermates were examined in terms of thermogenic and adipocyte-selective gene expression. Glucose tolerance and hepatic lipid accumulation in these mice were assessed under normal chow and high-fat diet conditions. Pre-adipocytes isolated from the stromal vascular fraction of BAT were transduced with Wt1-expressing retrovinis, induced to differentiate and analysed for the expression of thermogenic and adipocyte-selective genes. Results: Expression of the thermogenic genes Cpt1b and Tmem26 was enhanced and transcript levels of Ucp1 were on average more than tenfold higher in epididymal WAT of heterozygous Wt1 knockout mice compared with wild-type mice. Wt1 heterozygosity reduced epididymal WAT mass, improved whole-body glucose tolerance and alleviated severe hepatic steatosis upon diet-induced obesity in mice. Retroviral expression of WT1 in brown pre-adipocytes, which lack endogenous WT1, reduced mRNA levels of Ucp1, Ppargc1a, Cidea, Prdm16 and Cptlb upon in vitro differentiation by 60-90%. WT1 knockdown in epididymal pre-adipocytes significantly lowered Aldh1a1 and Zfp423 transcripts, two key suppressors of the thermogenic program. Conversely, Aldh1a1 and Zfp423 mRNA levels were increased approximately five- and threefold, respectively, by retroviral expression of WT1 in brown pre-adipocytes. Conclusion/interpretation: WT1 functions as a white adipocyte determination factor in epididymal WAT by suppressing thermogenic genes. Reducing Wt1 expression in this and other intra-abdominal fat depots may represent a novel treatment strategy in metabolic disease

    Inhibition of neutrophil activity improves cardiac function after cardiopulmonary bypass

    Get PDF
    Background The arterial in line application of the leukocyte inhibition module (LIM) in the cardiopulmonary bypass (CPB) limits overshooting leukocyte activity during cardiac surgery. We now studied in a porcine model whether LIM may have beneficial effects on cardiac function after CPB. Methods German landrace pigs underwent CPB (60 min myocardial ischemia; 30 min reperfusion)without (group I; n=6) or with LIM (group II; n=6). The cardiac indices (CI) and cardiac function were analyzed pre and post CPB with a Swan-Ganz catheter and the cardiac function analyzer. Neutrophil labeling with technetium, scintigraphy, and histological analyses were done to track activated neutrophils within the organs. Results LIM prevented CPB-associated increase of neutrophil counts in peripheral blood. In group I, the CI significantly declined post CPB (post: 3.26 +/- 0.31; pre: 4.05 +/- 0.45 l/min/m2; p<0.01). In group II, the CI was only slightly reduced (post: 3.86 +/- 0.49; pre 4.21 +/- 1.32 l/min/m2; p=0.23). Post CPB, the intergroup difference showed significantly higher CI values in the LIM group (p<0.05) which was in conjunction with higher pre-load independent endsystolic pressure volume relationship (ESPVR) values (group I: 1.57 +/- 0.18; group II: 1.93 +/- 0.16; p<0.001). Moreover, the systemic vascular resistance and pulmonary vascular resistance were lower in the LIM group. LIM appeared to accelerate the sequestration of hyperactivated neutrophils in the spleen and to reduce neutrophil infiltration of heart and lung. Conclusions Our data provide strong evidence that LIM improves perioperative hemodynamics and cardiac function after CPB by limiting neutrophil activity and inducing accelerated sequestration of neutrophils in the spleen

    Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws

    Full text link
    OBJECTIVES:The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. MATERIALS AND METHODS:Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. RESULTS:Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was "almost perfect" (intra-class correlation coefficient 0.85, p < 0.001). CONCLUSIONS:The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. KEY POINTS:• Flat detector computed tomography (FDCT) is a helpful imaging tool for scaphoid fixation. • The correction algorithm significantly reduces artefacts in FDCT induced by scaphoid fixation screws. • This may facilitate intra- and postoperative follow-up imaging

    Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws

    Get PDF
    Objectives: The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Materials and methods: Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A pvalue of < 0.05 was considered to indicate statistically significant differences. Results: Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was "almost perfect” (intra-class correlation coefficient 0.85, p < 0.001). Conclusions: The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. Key Points: • Flat detector computed tomography (FDCT) is a helpful imaging tool for scaphoid fixation. • The correction algorithm significantly reduces artefacts in FDCT induced by scaphoid fixation screws. • This may facilitate intra- and postoperative follow-up imaging

    Extracorporeal immune therapy with immobilized agonistic anti-Fas antibodies leads to transient reduction of circulating neutrophil numbers and limits tissue damage after hemorrhagic shock/resuscitation in a porcine model

    Get PDF
    Background: Hemorrhagic shock/resuscitation is associated with aberrant neutrophil activation and organ failure. This experimental porcine study was done to evaluate the effects of Fas-directed extracorporeal immune therapy with a leukocyte inhibition module (LIM) on hemodynamics, neutrophil tissue infiltration, and tissue damage after hemorrhagic shock/resuscitation. Methods: In a prospective controlled double-armed animal trial 24 Munich Mini Pigs (30.3 +/- 3.3 kg) were rapidly haemorrhaged to reach a mean arterial pressure (MAP) of 35 +/- 5 mmHg, maintained hypotensive for 45 minutes, and then were resuscitated with Ringer's solution to baseline MAP. With beginning of resuscitation 12 pigs underwent extracorporeal immune therapy for 3 hours (LIM group) and 12 pigs were resuscitated according to standard medical care (SMC). Haemodynamics, haematologic, metabolic, and organ specific damage parameters were monitored. Neutrophil infiltration was analyzed histologically after 48 and 72 hours. Lipid peroxidation, and apoptosis were specifically determined in lung, bowel, and liver. Results: In the LIM group, neutrophil counts were reduced versus SMC during extracorporeal immune therapy. After 72 hours, the haemodynamic parameters MAP and cardiac output (CO) were significantly better in the LIM group. Histological analyses showed reduction of shock-related neutrophil tissue infiltration in the LIM group, especially in the lungs. Lower amounts of apoptotic cells and lipid peroxidation were found in organs after LIM treatment. Conclusions: Transient Fas-directed extracorporeal immune therapy may protect from posthemorrhagic neutrophil tissue infiltration and tissue damage
    • …
    corecore