7 research outputs found

    Rakennusten energialaskennan testivuosi 2012 ja arviot ilmastonmuutoksen vaikutuksista

    Get PDF
    TiivistelmĂ€ Ilmaston lĂ€mpeneminen vaikuttaa rakennusten lĂ€mmitys- ja jÀÀhdytysenergian tarpeeseen. TĂ€ssĂ€ tutkimuksessa muodostettiin rakennusten energialaskennassa Suomessa kĂ€ytettĂ€vĂ€t uudet sÀÀaineistot, tuotettiin ilmastoskenaarioiden avulla rakennusten energialaskelmiin soveltuvat tulevaisuuden sÀÀaineistot ja arvioitiin rakennusten energiankulutusta vuoden 2030 muuttuneessa ilmastossa Rakennusten energialaskentaa varten kehitetty uusi testivuosi (TRY2012) korvaa aiemmin kĂ€ytetyn testivuoden 1979. Uuden testivuoden tunnittaiset sÀÀaineistot energialaskennan vyöhykkeillĂ€ I–II, III ja IV muodostettiin Vantaalla, JyvĂ€skylĂ€ssĂ€ ja SodankylĂ€ssĂ€ vuosina 1980–2009 tehtyjen sÀÀhavaintojen perusteella. Testivuoden kunkin kalenterikuukauden sÀÀaineistot valittiin sellaiselta vuodelta, jonka aikana kyseisen kuukauden sÀÀolot olivat mahdollisimman lĂ€hellĂ€ ilmastollista keskimÀÀrĂ€istilaa. KĂ€ytĂ€nnössĂ€ kalenterikuukausien valinta tehtiin tilastollisella menetelmĂ€llĂ€ tarkastellen lĂ€mpötilaa, kosteutta, auringon sĂ€teilyĂ€ ja tuulen nopeutta. NĂ€itĂ€ neljÀÀ sÀÀmuuttujaa painotettiin sen mukaan, kuinka paljon ne vaikuttavat Suomessa rakennusten lĂ€mmitys- ja jÀÀhdytystarpeeseen. Tyypilliselle uudispientalolle ja toimistorakennukselle tehdyt simuloinnit osoittivat, ettĂ€ lĂ€mmitys- ja jÀÀhdytystarpeen kannalta tĂ€rkein sÀÀmuuttuja on ulkoilman lĂ€mpötila, mutta kesĂ€llĂ€ auringon sĂ€teilyn vaikutus on suunnilleen yhtĂ€ suuri. Tutkimuksessa arvioitiin myös ilmastonmuutoksen vaikutuksia. Ilmastomallien tulosten pohjalta laadittiin tilastollisilta ominaisuuksiltaan vuosien 2030, 2050 ja 2100 arvioitua ilmastoa vastaavat tulevaisuuden testivuosien sÀÀaineistot. Vuoden 2030 tienoilla vuoden keskilĂ€mpötilan arvioidaan olevan paikkakunnasta riippuen 1,2–1,5 astetta korkeampi kuin TRY2012:n perusteella. Talvella keskilĂ€mpötila nousee noin kaksi astetta ja kesĂ€llĂ€ vajaan asteen. LĂ€mpötilan vaihtelevuus pienenee talvipuolella vuotta noin 10 %. Auringon sĂ€teilyn vĂ€heneminen talvella ja kevÀÀllĂ€, tuulen vĂ€hĂ€inen voimistuminen marrashelmikuussa ja ilman suhteellisen kosteuden pieni kasvu loka–huhtikuussa otettiin myös huomioon tulevaisuuden testivuosia laadittaessa. Lopuksi arvioitiin ilmastonmuutoksen vaikutuksia rakennusten energiantarpeeseen nykyisiĂ€ rakentamismÀÀrĂ€yksiĂ€ noudatettaessa. Laskelmissa esimerkkinĂ€ kĂ€ytetyn pientalon tilojen ja ilmanvaihdon lĂ€mmitystarve vĂ€henee vuoteen 2030 mennessĂ€ noin 10 % ja jÀÀhdytystarve kasvaa 17–19%. Toimistotalon lĂ€mmitystarve on vastaavasti 13% pienempi ja jÀÀhdytystarve 13-15 % suurempi kuin nykyisessĂ€ ilmastossa. Kaikkiaan rakennusten kokonaisostoenergiankulutus vĂ€henee vuoteen 2030 mennessĂ€ 4–7 % ilmaston muuttumisen takia.Abstract: The ongoing climate change is expected to affect the energy demand for heating and cooling of buildings. Building energy consumption is often assessed by simulation algorithms that require hourly meteorological data. For this purpose, weather observations from the year 1979 have previously been used in Finland as a reference. Here, we describe a new test reference year, TRY2012, that was constructed by using weather observations at three measurement stations (Vantaa, JyvĂ€skylĂ€ and SodankylĂ€) during 1980–2009. TRY2012 consists of weather data for twelve months that originate from different calendar years, each month having weather conditions close to the long-term climatological average. The months for TRY2012 were selected using Finkelstein-Schafer parameters for four climatic variables (air temperature, humidity, solar radiation and wind speed); these parameters were weighted depending on how important individual climatic variables are for the building energy consumption in Finland. Calculations for two example buildings, a detached house and an office building, indicate that the most influential climatic variable for annual energy demand is air temperature. In summer, solar radiation and air temperature are of broadly equal influence. We also assessed the influence of human-induced climate change on typical weather conditions for the years 2030, 2050 and 2100. Multi-model mean estimates from 7 to 19 global climate models, together with the TRY2012 weather data, were used to construct artificial meteorological data for the future. The projected reference year TRY2030 is 1.2–1.5ÂșC warmer than TRY2012, with the lower end of the range corresponding to Vantaa in southern Finland and the higher value to SodankylĂ€ in the north. Seasonal mean temperature is projected to increase by about two degrees in winter and by slightly less than one degree in summer. The variability in temperature will diminish in the winter half of the year by about 10 %. In addition, the projections include decreases in solar radiation in winter and spring, slight increases in wind speed in November-February, and small rises in relative air humidity in all seasons except summer. Utilizing the reference years TRY2012 and TRY2030, we calculated the mean monthly and annual energy consumption for the two example buildings in the current and projected future climate. Based on the simulations, the heat energy consumption of spaces and ventilation will decrease by 10% for the detached house and by 10–13% for the office building, whereas space cooling electricity will increase by 17–19% for the detached house and by 13–15% for the office building. Because electricity for cooling relative to the total delivered energy is minor, the total energy consumption of the example buildings is projected to decrease by 4–7% by 2030

    Puumala Hantavirus Infections Show Extensive Variation in Clinical Outcome

    Get PDF
    The clinical outcome of Puumala hantavirus (PUUV) infection shows extensive variation, ranging from inapparent subclinical infection (70–80%) to severe hemorrhagic fever with renal syndrome (HFRS), with about 0.1% of cases being fatal. Most hospitalized patients experience acute kidney injury (AKI), histologically known as acute hemorrhagic tubulointerstitial nephritis. Why this variation? There is no evidence that there would be more virulent and less virulent variants infecting humans, although this has not been extensively studied. Individuals with the human leukocyte antigen (HLA) alleles B*08 and DRB1*0301 are likely to have a severe form of the PUUV infection, and those with B*27 are likely to have a benign clinical course. Other genetic factors, related to the tumor necrosis factor (TNF) gene and the C4A component of the complement system, may be involved. Various autoimmune phenomena and Epstein-Barr virus infection are associated with PUUV infection, but hantavirus-neutralizing antibodies are not associated with lower disease severity in PUUV HFRS. Wide individual differences occur in ocular and central nervous system (CNS) manifestations and in the long-term consequences of nephropathia epidemica (NE). Numerous biomarkers have been detected, and some are clinically used to assess and predict the severity of PUUV infection. A new addition is the plasma glucose concentration associated with the severity of both capillary leakage, thrombocytopenia, inflammation, and AKI in PUUV infection. Our question, “Why this variation?” remains largely unanswered

    Puumala Hantavirus Infections Show Extensive Variation in Clinical Outcome

    No full text
    The clinical outcome of Puumala hantavirus (PUUV) infection shows extensive variation, ranging from inapparent subclinical infection (70-80%) to severe hemorrhagic fever with renal syndrome (HFRS), with about 0.1% of cases being fatal. Most hospitalized patients experience acute kidney injury (AKI), histologically known as acute hemorrhagic tubulointerstitial nephritis. Why this variation? There is no evidence that there would be more virulent and less virulent variants infecting humans, although this has not been extensively studied. Individuals with the human leukocyte antigen (HLA) alleles B*08 and DRB1*0301 are likely to have a severe form of the PUUV infection, and those with B*27 are likely to have a benign clinical course. Other genetic factors, related to the tumor necrosis factor (TNF) gene and the C4A component of the complement system, may be involved. Various autoimmune phenomena and Epstein-Barr virus infection are associated with PUUV infection, but hantavirus-neutralizing antibodies are not associated with lower disease severity in PUUV HFRS. Wide individual differences occur in ocular and central nervous system (CNS) manifestations and in the long-term consequences of nephropathia epidemica (NE). Numerous biomarkers have been detected, and some are clinically used to assess and predict the severity of PUUV infection. A new addition is the plasma glucose concentration associated with the severity of both capillary leakage, thrombocytopenia, inflammation, and AKI in PUUV infection. Our question, "Why this variation?" remains largely unanswered.publishedVersionPeer reviewe
    corecore