81 research outputs found

    Investigation of a dual siRNA/chemotherapy delivery system for breast cancer therapy

    Get PDF
    Multidrug resistance (MDR) is a problem that is often associated with a poor clinical outcome in chemotherapeutic cancer treatment. MDR may potentially be overcome by utilizing synergistic approaches, such as combining siRNA gene therapy and chemotherapy to target different mechanisms of apoptosis. In this study, a strategy is presented for developing multicomponent nanomedicines using orthogonal and compatible chemistries that lead to effective nanotherapeutics. Hyperbranched polymers were used as drug carriers that contained doxorubicin (DOX), attached via a pH-sensitive hydrazone linkage, and ataxia-telangiectasia mutated (ATM) siRNA, attached via a redox-sensitive disulfide group. This nanomedicine also contained cyanine 5 (Cy5) as a diagnostic tracer as well as in-house developed bispecific antibodies that allowed targeting of the epidermal growth factor receptor (EGFR) present on tumor tissue. Highly efficient coupling of siRNA was achieved with 80% of thiol end-groups on the hyperbranched polymer coupling with siRNA. This attachment was reversible, with the majority of siRNA released in vitro under reducing conditions as desired. In cellular studies, the nanomedicine exhibited increased DNA damage and cancer cell inhibition compared to the individual treatments. Moreover, the nanomedicine has great potential to suppress the metabolism of cancer cells including both mitochondrial respiration and glycolytic activity, with enhanced efficacy observed when targeted to the cell surface protein EGFR. Our findings indicated that co-delivery of ATM siRNA and DOX serves as a more efficient therapeutic avenue in cancer treatment than delivery of the single species and offers a potential route for synergistically enhanced gene therapy

    Cortico-amygdalar connectivity and externalizing/internalizing behavior in children with neurodevelopmental disorders

    Get PDF
    Background: Externalizing and internalizing behaviors contribute to clinical impairment in children with neurodevelopmental disorders (NDDs). Although associations between externalizing or internalizing behaviors and cortico-amygdalar connectivity have been found in clinical and non-clinical pediatric samples, no previous study has examined whether similar shared associations are present across children with different NDDs. Methods: Multi-modal neuroimaging and behavioral data from the Province of Ontario Neurodevelopmental Disorders (POND) Network were used. POND participants aged 6–18 years with a primary diagnosis of autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD) or obsessive–compulsive disorder (OCD), as well as typically developing children (TDC) with T1-weighted, resting-state fMRI or diffusion weighted imaging (DWI) and parent-report Child Behavioral Checklist (CBCL) data available, were analyzed (total n = 346). Associations between externalizing or internalizing behavior and cortico-amygdalar structural and functional connectivity indices were examined using linear regressions, controlling for age, gender, and image-modality specific covariates. Behavior-by-diagnosis interaction effects were also examined. Results: No significant linear associations (or diagnosis-by-behavior interaction effects) were found between CBCL-measured externalizing or internalizing behaviors and any of the connectivity indices examined. Post-hoc bootstrapping analyses indicated stability and reliability of these null results. Conclusions: The current study provides evidence towards an absence of a shared linear relationship between internalizing or externalizing behaviors and cortico-amygdalar connectivity properties across a transdiagnostic sample of children with different primary NDD diagnoses and TDC. Different methodological approaches, including incorporation of multi-dimensional behavioral data (e.g., task-based fMRI) or clustering approaches may be needed to clarify complex brain-behavior relationships relevant to externalizing/internalizing behaviors in heterogeneous clinical NDD populations

    Thaliporphine Preserves Cardiac Function of Endotoxemic Rabbits by Both Directly and Indirectly Attenuating NFκB Signaling Pathway

    Get PDF
    Cardiac depression in sepsis is associated with the increased morbidity and mortality. Although myofilaments damage, autonomic dysfunction, and apoptosis play roles in sepsis-induced myocardial dysfunction, the underlying mechanism is not clear. All of these possible factors are related to NFκB signaling, which plays the main role in sepsis signaling. Thaliporphine was determined to possess anti-inflammatory and cardioprotective activity by suppressing NFκB signaling in rodents. The purpose of this study is to further prove this protective effect in larger septic animals, and try to find the underlying mechanisms. The systolic and diastolic functions were evaluated in vivo by pressure-volume analysis at different preloads. Both preload-dependent and -independent hemodynamic parameters were performed. Inflammatory factors of whole blood and serum samples were analyzed. Several sepsis-related signaling pathways were also determined at protein level. Changes detected by conductance catheter showed Thaliporphine could recover impaired left ventricular systolic function after 4 hours LPS injection. It could also reverse the LPS induced steeper EDPVR and gentler ESPVR, thus improve Ees, Ea, and PRSW. Thaliporphine may exert this protective effect by decreasing TNFα and caspase3 dependent cell apoptosis, which was consistent with the decreased serum cTnI and LDH concentration. Thaliporphine could protect sepsis-associated myocardial dysfunction in both preload-dependent and -independent ways. It may exert these protective effects by both increase of “good”-PI3K/Akt/mTOR and decrease of “bad”-p38/NFκB pathways, which followed by diminishing TNFα and caspase3 dependent cell apoptosis

    Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    Get PDF
    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.X-ray photoelectron spectra were obtained at the National Engineering and Physical Sciences Research Council (EPSRC) XPS User’s Service (NEXUS) at Newcastle University, an EPSRC midrange facility. NR data were obtained on the D17 instrument, and samples were treated in the laboratories of the Partnership for Soft Condensed Matter (PSCM) at the Institut Laue-Langevin. M.H.W. is grateful for funding from the Oppenheimer Trust.This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/acs.langmuir.5b0171

    Zinc ions bind to and inhibit activated protein C

    Get PDF
    Zn2+ ions were found to efficiently inhibit activated protein C (APC), suggesting a potential regulatory function for such inhibition. APC activity assays employing a chromogenic peptide substrate demonstrated that the inhibition was reversible and the apparent K I was 13 +/- 2 muM. k cat was seven fold decreased whereas K M was unaffected in the presence of 10 muM Zn2+. The inhibitory effect of Zn2+ on APC activity was also observed when factor Va was used as a substrate in an assay coupled to a prothrombinase assay. The interaction of Zn2+ with APC was accompanied by a reversible ~40% decrease in tryptophan fluorescence, consistent with the ion inducing a conformational change in the protein. The apparent K D was 7.4 +/- 1.5 muM and thus correlated well with the apparent K I. In the presence of physiological Ca2+ concentration the K I and K D values were three to four fold enhanced, presumably due to the Ca2+-induced conformational change affecting the conformation of the Zn2+-binding site. The inhibition mechanism was non-competitive both in the absence and presence of Ca2+. Comparisons of sequences and structures suggested several possible sites for zinc binding. The magnitude of the apparent KI in relation to the blood and platelet concentrations of Zn2+ supports a physiological role for this ion in the regulation of anticoagulant activity of APC. These findings broaden the understanding of this versatile serine protease and enable the future development of potentially more efficient anticoagulant APC variants for treatments of thrombotic diseases

    The Mirror of History: How to Statistically Identify Stock Market Bubble Bursts

    No full text
    This paper proposes a method for detecting bubble phases and the timing of bursts in global stock markets. The study identifies 27 bubbles in 29 global stock market indices over the last century. Using transformations and change-point detection on index returns, we discover that every major bubble has the same two-phase pattern indeed. Although the mechanisms or causes of each bubble are complex and unique, they all follow the same pattern. Thus, our findings suggest that history has a tendency to repeat itself. © 2022 Elsevier B.V

    In situ and dynamic SERS monitoring of glutathione levels during cellular ferroptosis metabolism

    No full text
    Ferroptosis is a non-apoptotic cell death regulated by iron-dependent lipid peroxidation. Glutathione (GSH), a key antioxidant against oxidative damage, is involved in one of the most important metabolic pathways of ferroptosis. Herein, an excellent plasmonic nanoprobe was developed for highly sensitive, in situ, dynamic real-time monitoring of intracellular GSH levels during ferroptosis. A nanoprobe was prepared by functionalizing gold nanoparticles (AuNPs) with the probe molecule crystal violet (CV). The fluctuation in the SERS signal intensity of CV via the competitive displacement reaction can be used to detect GSH. The advantages of the plasmonic nanoprobe including low-cost production techniques, outstanding stability and biocompatibility, high specificity and sensitivity towards GSH with a detection limit of 0.05 μM. It enables real-time dynamic monitoring of GSH levels in living cells during erastin-induced ferroptosis. This approach is expected to provide important theoretical support for elucidating the GSH-related ferroptosis metabolic mechanism and advancing our understanding of ferroptosis-based cancer therapy

    Quantitative synchrotron X-ray fluorescence study of the penetration of transferrin-conjugated gold nanoparticles inside model tumour tissues

    No full text
    The next generation of therapeutic nanoparticles in the treatment of cancer incorporate specific targeting. There is implicit importance in understanding penetration of targeted nanomedicines within tumour tissues via accurate and quantitative temporospatial measurements. In this study we demonstrate the potential of state-of-the-art synchrotron X-ray fluorescence microscopy (XFM) to provide such insights. To this end, quantitative mapping of the distribution of transferrin-conjugated gold nanoparticles inside multicellular tumour spheroids was achieved using XFM and compared with qualitative data obtained using reflectance confocal microscopy. Gold nanoparticles conjugated with human transferrin with a narrow size-distribution and high binding affinity to tumour cells were prepared as confirmed by cellular uptake studies performed on 2D monolayers. Although the prepared 100 nm transferrin-conjugated gold nanoparticles had high targeting capability to cancer cells, penetration inside multicellular spheroids was limited even after 48 hours as shown by the quantitative XFM measurements. The rapid, quantitative and label-free nature of state-of-the-art synchrotron XFM make it an ideal technology to provide the structure–activity relationship understanding urgently required for developing the next generation of immuno-targeted nanomedicines

    Bio-inspired nanocarriers derived from stem cells and their extracellular vesicles for targeted drug delivery

    No full text
    With their seemingly limitless capacity for self-improvement, stem cells have a wide range of potential uses in the medical field. Stem-cell-secreted extracellular vesicles (EVs), as paracrine components of stem cells, are natural nanoscale particles that transport a variety of biological molecules and facilitate cell-to-cell communication which have been also widely used for targeted drug delivery. These nanocarriers exhibit inherent advantages, such as strong cell or tissue targeting and low immunogenicity, which synthetic nanocarriers lack. However, despite the tremendous therapeutic potential of stem cells and EVs, their further clinical application is still limited by low yield and a lack of standardized isolation and purification protocols. In recent years, inspired by the concept of biomimetics, a new approach to biomimetic nanocarriers for drug delivery has been developed through combining nanotechnology and bioengineering. This article reviews the application of biomimetic nanocarriers derived from stem cells and their EVs in targeted drug delivery and discusses their advantages and challenges in order to stimulate future research
    corecore