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Abstract
Background Externalizing and internalizing behaviors contribute to clinical impairment in children with neurodevelopmental 
disorders (NDDs). Although associations between externalizing or internalizing behaviors and cortico-amygdalar connectiv-
ity have been found in clinical and non-clinical pediatric samples, no previous study has examined whether similar shared 
associations are present across children with different NDDs.
Methods Multi-modal neuroimaging and behavioral data from the Province of Ontario Neurodevelopmental Disorders 
(POND) Network were used. POND participants aged 6–18 years with a primary diagnosis of autism spectrum disorder 
(ASD), attention-deficit/hyperactivity disorder (ADHD) or obsessive–compulsive disorder (OCD), as well as typically 
developing children (TDC) with T1-weighted, resting-state fMRI or diffusion weighted imaging (DWI) and parent-report 
Child Behavioral Checklist (CBCL) data available, were analyzed (total n = 346). Associations between externalizing or 
internalizing behavior and cortico-amygdalar structural and functional connectivity indices were examined using linear 
regressions, controlling for age, gender, and image-modality specific covariates. Behavior-by-diagnosis interaction effects 
were also examined.
Results No significant linear associations (or diagnosis-by-behavior interaction effects) were found between CBCL-measured 
externalizing or internalizing behaviors and any of the connectivity indices examined. Post-hoc bootstrapping analyses 
indicated stability and reliability of these null results.
Conclusions The current study provides evidence towards an absence of a shared linear relationship between internalizing or 
externalizing behaviors and cortico-amygdalar connectivity properties across a transdiagnostic sample of children with differ-
ent primary NDD diagnoses and TDC. Different methodological approaches, including incorporation of multi-dimensional 
behavioral data (e.g., task-based fMRI) or clustering approaches may be needed to clarify complex brain-behavior relation-
ships relevant to externalizing/internalizing behaviors in heterogeneous clinical NDD populations.

Keywords Brain-behavior relationships · Neurodevelopmental disorders · Multi-modal neuroimaging · Structural 
covariance · Functional connectivity · White matter connectivity

Introduction

Autism spectrum disorder (ASD), attention-deficit/hyperac-
tivity disorder (ADHD), and pediatric obsessive–compulsive 
disorder (OCD) are neurodevelopmental disorders (NDDs) 
with high rates of clinical co-occurrence (Abramovitch 

et al. 2015; Jang et al. 2013; Lai et al. 2019; Lewin et al. 
2011; Masi et al. 2006) in addition to significant overlap in 
clinical (Lawson et al. 2015; Mito et al. 2014), behavioral 
(Anholt et al. 2010; Havdahl et al. 2016), cognitive (Ant-
shel et al. 2013; Van Der Meer et al. 2012), genetic (Lionel 
et al. 2014, 2011), and brain features (Ameis et al. 2016; 
Kern et al. 2015). This overlap has motivated recent research 
examining the shared and/or distinct biological and behav-
ioral features across transdiagnostic samples (Ameis et al. 
2016; Carlisi et al. 2017; Kushki et al. 2019). Externalizing 
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(e.g., aggression, rule-breaking) and internalizing (e.g., 
withdrawal, anxiety, depression, somatic) behaviors mani-
fest across children and youth to varying degrees (Bradley 
et al. 2004; Dwyer et al. 2006; Ghandour et al. 2019; Jacob 
et al. 2014). Children and youth with NDDs are more likely 
to exhibit clinically significant behaviors in either domain 
(Alvarenga et al. 2016; Bauminger et al. 2010; Jacob et al. 
2014), contributing to increased functional impairment (e.g., 
at school and home) (Arim et al. 2015; Mazurek et al. 2013) 
and poorer response to interventions (Hill et al. 2014; Torp 
et al. 2015).

Internalizing and externalizing behaviors have been 
linked to alterations in various cortico-amygdalar networks, 
such as the parieto-amygdalar network (Karlsgodt et al. 
2018; Chahal et al. 2020), default mode network (Umbach 
& Tottenham 2020; Sato et al. 2016), and the fronto-amyg-
dalar network (Ameis et al. 2014; Vijayakumar et al. 2017). 
Frontal cortical regions in particular have been implicated 
in decision-making (Rushworth et al. 2011), behavioral 
regulation (Rushworth et al. 2011), and emotional regu-
lation (Albaugh et al. 2016; Ducharme et al. 2011) which 
provide top-down modulation of amygdalar activity (Etkin 
et al. 2006; Hariri et al. 2003).This cortico-amygdalar net-
work is connected through two main white matter tracts: 
the uncinate fasciculus (UF) and the cingulum bundle (CB) 
(Catani et al. 2013). In typically developing children (TDC), 
increased internalizing behavior has been associated with 
altered structural covariance between the prefrontal cortex 
and amygdala (Vijayakumar et al. 2017), decreased frac-
tional anisotropy (FA) of the UF and CB (Albaugh et al. 
2016; Mohamed Ali et al. 2019), and increased functional 
connectivity between the ventromedial prefrontal cortex 
and amygdala (Qin et al. 2014). Also in TDC, increased 
externalizing behavior has been associated with altered cor-
tico-amygdalar structural covariance (Ameis et al. 2014), 
decreased FA of the UF (Andre et al. 2020), and altered 
functional connectivity between amygdala and frontal corti-
cal regions (Aghajani et al. 2017, 2016; Saxbe et al. 2018). 
Broad cortico-amygdalar network alterations have also been 
found in studies of children with primary internalizing (e.g., 
major depressive disorder) or externalizing (e.g., opposi-
tional defiant disorder) disorders (Castellanos-Ryan et al. 
2014; Luking et al. 2011; Noordermeer et al. 2016; Paulesu 
et al. 2010; Stoycos et al. 2017) compared to TDC. Shared 
continuous associations between task-based fMRI and 
behavioral measures (parent report and in-scanner assess-
ments) have also been found across children with different 
clinical diagnoses (i.e., disruptive behavior disorders, anxi-
ety disorders, or ADHD) (Ibrahim et al. 2019; Stoddard et al. 
2017). Taken together, these studies suggest that cortico-
amygdalar connectivity properties may be associated with 
both externalizing and internalizing behaviors, which often 
co-occur (Korhonen et al. 2014; Reef et al. 2011), and may 

relate to these behaviors along a continuum cutting across 
TDC and different mental health diagnoses.

As of yet, we know of no study that has investigated 
whether cortico-amygdala network properties relate to 
internalizing or externalizing behaviors across children with 
different NDDs, which would suggest common neurobio-
logical underpinnings contributing to these behaviors across 
diagnoses. The present study investigated linear associations 
between externalizing or internalizing behaviors and indices 
of cortico-amygdalar network connectivity (i.e., separately 
evaluated structural covariance, resting-state functional con-
nectivity, and white matter connectivity) in a large sample, 
including TDC and children and youth with primary diagno-
ses of ASD, OCD, or ADHD. We hypothesized that greater 
externalizing or internalizing behaviors would be associated 
with reduced cortico-amygdalar structural and functional 
connectivity indices across our transdiagnostic sample.

Methods

Participants

Participants included in the current study participated in the 
Province of Ontario Neurodevelopmental Disorders (POND) 
Network; recruitment was carried out at different sites across 
the province of Ontario, Canada, including the Hospital for 
Sick Children (SickKids), Holland Bloorview Kids Reha-
bilitation Hospital, Lawson Health Research Institute, 
McMaster University and Queen’s University between June 
2012 and January 2020. Children and youth were eligible 
to participate in POND if they had a primary clinical diag-
nosis of ASD, ADHD or OCD, sufficient English language 
comprehension to complete the behavioral assessments, 
and no contraindications for MRI (e.g., metal implants). 
The Parent Interview for Child Symptoms (Ickowicz et al. 
2006) was used to confirm ADHD diagnosis, the Schedule 
for Affective Disorders-Children’s Version (Kiddie-SADS) 
and Children’s Yale-Brown Obsessive–Compulsive Scale 
(Scahill et al. 1997) for OCD, and the Autism Diagnostic 
Observation Schedule-2 (Lord et al. 2000) and the Autism 
Diagnostic Interview-Revised (Lord et al. 1994) for ASD. 
TDC participants were recruited through flyers posted at 
each recruitment site as well as through word-of-mouth. 
The exclusion criteria for TDC included: history of prema-
ture birth (< 35 weeks), presence of an NDD, first-degree 
relative with an NDD, psychiatric or neurologic diagnosis, 
confirmed via parental screening. Age-appropriate Wechsler 
scales were used to estimate full-scale IQ (Littell 1960). 
Participating institutions received approval for this study 
from their respective research ethics boards. Primary car-
egivers and participants provided either written informed 
consent or assent after a complete description of the study 
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was provided. As of January 2020, MRI and behavioral 
data were available for 611 children and youth with ASD, 
ADHD, OCD, or TDC (n = 286 ASD; n = 159 ADHD; n = 68 
OCD; n = 98 TDC) who completed MRI scanning at Sick-
Kids (Toronto, Canada). The present study analyzed data 
from a subset of these 611 POND participants who met all 
of the following criteria: (i) they had successfully completed 
a T1-weighted, resting-state, or single-shell DWI scan, (ii) 
were between the ages of 6 and 18 years at time of brain 
scan, and (iii) had Child Behavior Checklist (CBCL) data 
available that was collected within 12 months of their MRI 
scan (see Fig. 1).

Measurement of externalizing and internalizing 
behaviors

Externalizing and internalizing behavioral scores were 
measured using the parent-report CBCL (ages 6–18), a 
standardized, well-established instrument (Achenbach and 

Ruffle 2000) that has been widely used for brain-behavior 
analyses in pediatric samples (Albaugh et al. 2016; Ameis 
et al. 2014; Ducharme et al. 2014, 2011; Ibrahim et al. 
2019). The CBCL provides continuous measures of exter-
nalizing (calculated by combining rule-breaking and aggres-
sive CBCL subscales) and internalizing behavior (calculated 
by combining withdrawn, anxious/depressed and somatic 
CBCL subscales), with a domain specific t-score (standard-
ized by age and gender) > 70 indicating clinically significant 
symptoms.

MRI protocol

Participants were scanned on a 3 T Siemens Tim Trio at Sick-
Kids that was upgraded to the Siemens PrismaFIT in June 
2016. All T1-weighted brain imaging consisted of a 5-min 
scan using an MPRAGE sequence with grappa paralleliza-
tion (Tim Trio: (1 × 1x1)mm3, TR = 2,300 ms, TE = 2.96 ms, 
TI = 900  ms, Flip Angle = 9°, FOV = 224 ×  224mm2, 

Fig. 1  Diagrams presenting the overall POND imaging samples 
which includes children with autism spectrum disorder (ASD), atten-
tion-deficit/hyperactivity disorder (ADHD), obsessive compulsive 
disorder (OCD) and typically developing children (TDC) scanned 
at the Hospital for Sick Children as of January 2020. Imaging data 
from T1-weighted (T1w), resting state fMRI (rsfMRI) and diffusion 
weighted imaging (DWI) sequences are presented. The reasons for 
exclusion presented for level 1: participants being outside the 6–18 
age range at time of scan, a greater than 12 month time gap between 
scan and CBCL administration, and missing CBCL data; level 2: per-
sistent processing errors at any point within the processing pipeline 

(e.g. errors in the fMRIprep pipeline); level 3: exclusion based on 
quality control (QC; details presented in the paper and supplement). 
The numbers for the final analysed sample for each imaging modality 
are presented. For the T1w and rs-fMRI samples, participants were 
scanned on a 3 T Siemens Tim Trio scanner prior to June 2016 when 
the scanner was upgraded to the PrismaFIT. For rs-fMRI acquisi-
tions, participants scanned on the Tim Trio selected a movie to watch 
and participants scanned on the PrismaFIT viewed a naturalistic film 
(inscapes). The study includes only single-shell DWI acquisitions 
(n = 262) completed on the Tim Trio scanner
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240 Slices, GRAPPA = 2, 12-channel head coil; Pris-
maFIT: (0.8 × 0.8x0.8)mm3, TR = 1,870 ms, TE = 3.14 ms, 
TI = 945 ms, Flip Angle = 9°, FOV = 222 ×  222mm2, 240 
Slices, GRAPPA = 2, 20-channel head coil).

Resting state functional MRI (rs-fMRI) data consisted of 
a ~ 5-min scan (Tim Trio: (3.5 × 3.5x3.5)mm3, TR = 2340 ms, 
TE = 30  ms, Flip Angle = 70°, FOV = 256 ×  240mm2, 
120 volumes; PrismaFIT: (3 × 3x3)mm3, TR = 1500 ms, 
TE = 30 ms, Flip Angle = 70° FOV = 256 ×  240mm2, 200 
volumes). During rs-fMRI scanning, participants either 
viewed a movie of their choice, if the scan occurred pre-
upgrade on Tim Trio, or a naturalistic movie paradigm (Van-
derwal et al. 2015), if the scan occurred post-upgrade on 
PrismaFIT.

Single-shell DWI scans were acquired as 3 consecutive 
sequences with 19, 20 or 21 gradient directions (for a total 
of 60 directions) and 3 B0’s per acquisition sequence. Scan 
parameters were as follows: ((2 × 2x2)mm3, TR = 3800 ms, 
TE = 73 ms, Flip Angle = 90° FOV = 244 × 244mm2, 69 
volumes, B0 = 1000). Multi-shell DWI data were acquired 
post scanner upgrade to PrismaFIT. Multi-shell data were 
not analyzed in the current study due to the challenges of 
harmonization across different DWI scan acquisition proto-
cols and concerns regarding measurement variability given 
substantial differences in the pre-to-post hardware upgrade 
sequence design (Tax et al. 2019).

Image pre‑processing

Prior to pre-processing, the acquired brain scans of par-
ticipants who had multiple image acquisitions underwent 
quality assessment and the higher quality scan was pre-pro-
cessed. Visual examination of the raw brain scan was used 
to assess the quality of T1-weighted and DWI acquisitions. 
Quality metric comparisons (e.g., mean framewise displace-
ment [FD]) from the MRIQC pipeline (Esteban et al. 2017) 
was used to assess rs-fMRI acquisitions.

Structural MRI

T1-weighted brain images were pre-processed using the 
fMRIprep pipeline (Esteban et al. 2019) which runs Free-
Surfer and performs intensity non-uniformity correction, 
skull stripping, calculates spatial normalization based on 
an MNI template, tissue segmentation and surface recon-
struction. Images were also run through the MRIQC pipe-
line (Esteban et al. 2017) to extract quality metrics used in 
the quality control (QC) procedure. Left and right amyg-
dala volumes from each participant were extracted using the 
amygdala region-of-interest (ROI) defined by the Desikan-
Killiany Atlas (Desikan et al. 2006). The ciftify pipeline 
((Dickie et al. 2019); https:// github. com/ edick ie/ cifti fy) was 
used to transform the images from the FreeSurfer format to 

the Connectivity Informatics Technology Initiative (CIFTI) 
format. From there, the 40,962 vertices in each hemisphere 
were extracted based on FreeSurfer’s white and pial sur-
faces. This pipeline registered cortical surfaces to an average 
surface to establish correspondence between participants. 
Cortical thickness values at each vertex were smoothed 
with a Gaussian kernel of 12 mm full width half maximum 
(FWHM).

Resting state fMRI

The rs-fMRI acquisitions were pre-processed through 
fMRIPrep (Esteban et al. 2019). Within fMRIPrep, the data 
was slice timed and motion corrected. Distortion correc-
tion was performed using field maps; the functional image 
was co-registered to the corresponding T1-weighted image 
using FreeSurfer with boundary-based registration with 
9 degrees of freedom. Nonlinear transformation to the 
MNI152 template was calculated via FSL’s FNIRT (based 
on the T1-weighted image) and applied to the functional 
data. These data were then transformed onto the cortical 
surface and converted to the CIFTI format (Dickie et al. 
2019). The first three TRs were dropped, and voxel time 
series underwent mean-based intensity normalization, lin-
ear and quadratic detrending, temporal bandpass filtering 
(0.009–0.08 Hz), and confound regression for 6 head motion 
parameters, white matter signal, CSF signal and global sig-
nal plus their lags, their squares, and the squares of their 
lags (i.e. a 24HMP + 8 Phys + 4 GSR confounds) (Ciric et al. 
2018). Global signal regression was employed as it has been 
shown to reduce sources of noise and reduce correlations 
between mean FD and functional connectivity (Parkes et al. 
2018). Spatial smoothing was then performed on the cortical 
surface data (FWHM = 8 mm).

DWI

DWI scans from the three separate runs were concatenated. 
Diffusion data were denoised using random field theory and 
upsampled to a (1 × 1x1)  mm3 voxel size using the MRtrix3 
dwidenoise and mrresize commands, respectively (Veraart 
et al. 2016). Using fieldmaps, images were corrected for 
motion artefacts accounting for field inhomogeneities and 
eddy current induced artefacts using FSL's (Smith et al. 
2004) eddy function (Andersson et al. 2016; Andersson and 
Sotiropoulos 2016). Deterministic tractography was used 
to delineate the UF and CB via the Slicer dMRI software 
(https:// github. com/ Slice rDMRI). The software registered 
the tracts for all participants using a dataset-specific atlas 
based on a representative subset (n = 21) from the cur-
rent sample (selected based on age, gender and diagnosis) 
(Fedorov et al. 2012). Within the Slicer software, fiber 
clusters were manually appended to create the white matter 

https://github.com/edickie/ciftify
https://github.com/SlicerDMRI
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tracts of interest (CB and UF). The atlas was registered to all 
participants’ DWI acquisitions and FA and mean diffusivity 
(MD) metrics were extracted.

Quality control (QC)

To reduce potential bias of image artefacts, a rigorous a 
priori QC procedure was applied for all imaging modali-
ties (supplementary Sect.  1; Figure S1). T1-weighted 
images were assessed for motion artefacts using a visual 
QC approach (HTML visual outputs from the fMRIPrep 
pipeline) in addition to quantitative QC (MRIQC-derived 
quality metrics). For the rs-fMRI sequence, participants that 
did not complete the ~ 5-min scan were excluded based on 
prior research indicating this time duration is required for 
stable estimations of correlation strengths (Van Dijk et al. 
2010). Quality of rs-fMRI acquisitions were assessed based 
on mean FD and excluded based on in-scanner motion at 
mean FD > 0.5 mm as implemented in prior studies (Sat-
terthwaite et al. 2012; Choi et al. 2020) given that children 
have high levels of in-scanner head motion (Pardoe et al. 
2016). DWI acquisitions were assessed for slice dropouts, 
poor V1 directions and residuals using an in-house standard-
ized pipeline in addition to quantitative quality metrics. See 
Figure S1 and supplement for QC procedure details.

Statistical analysis

Brain‑behavior relations

Each modality (T1w, rs-fMRI, and DWI) underwent a dis-
tinct statistical analytical pipeline. Separate linear regression 
models were fit to examine the presence of an association 
between externalizing or internalizing behavioral scores 
and cortico-amygdalar connectivity metrics from the three 
included modalities: structural covariance, seed based rs-
fMRI, FA and MD of the UF and CB (see below and supple-
mentary for details). Covariates for the primary regression 
models included age, gender, and scanner (if acquisitions 
from a modality included a scanner upgrade). Prior to fit-
ting the brain-behavior regression models, linear regression 
models were fit between age, age-squared, and brain and 
behavior indices. The better fitting age term was included as 
a covariate in the main analyses (Table S2; supplementary 
Sect. 5.1). If the better fitting age term was quadratic, then 
linear and quadratic age terms were included in the model 
(see supplementary; Table S2, Figure S6). Across image 
modalities, if the primary regression models were signifi-
cant, subsequent models were planned to sequentially fit 
the following covariates: (i) the alternate broad-band CBCL 
score (e.g., internalizing behavior as a covariate when exter-
nalizing behavior is the predictor variable) to account for 

shared variability (Zald and Lahey 2017), (ii) mean FD for 
functional connectivity models (Power et al. 2012; Satter-
thwaite et al. 2012) or an estimate of overall noise for white 
matter connectivity models (Anderson 2001) (see details in 
S3.2.1), and (iii) medication status (taking medication, not 
taking medication, unknown).

Cortico‑amygdalar structural covariance

To be consistent with the approach used in prior studies 
examining the relationship between cortico-amygdalar con-
nectivity and internalizing/externalizing behavior (Ameis 
et al. 2014; Ducharme et al. 2017; Albaugh et al. 2017; 
Vijayakumar et al. 2017), in the current study we assessed 
structural covariance using a vertex-wise approach. Using 
a partial regression, an interaction term (independent 
variable) between internalizing or externalizing behavior 
scores and left or right amygdala volume (e.g., external-
izing behavior*left amygdala volume) was regressed onto 
each cortical vertex (with thickness at each vertex as the 
dependent variable) controlling for age, parent reported 
gender (boy/girl), intracranial volume (Buckner et al. 2004; 
Raz et al. 2004) and scanner (i.e., Tim Trio pre-upgrade or 
PrismaFIT post-upgrade). Analyses were carried out using 
FSL’s Permutation Analysis of Linear Models (PALM) 
package. Clusters of vertex-wise significance were deter-
mined using 2000 permutations with the threshold free 
cluster enhancement (TFCE) approach (Smith and Nichols 
1996). Considering the high number of cortical vertices and 
consequent linear models, group results were thresholded 
at p < 0.05 FDR-corrected for the number of vertices in 
each hemisphere, and further corrected for separate runs of 
PALM for each hemisphere (critical level a = 0.025). Eight 
models were fit with cortical thickness at each vertex as the 
dependent variable to account for the different combina-
tions between behavioral scores and amygdala volume and 
the behavior-by-diagnosis terms. Similar partial regression 
models were used for analyses examining rs-fMRI and DWI 
metrics as dependent variables. See below an example of 
one of the linear regression models examining associations 
between left cortico-amygdalar structural covariance and 
externalizing behavior.

Thickness  a t  each cor t ica l  ver tex  =  In ter-
cept + β1(externalizing behavior CBCL score*left amygdala 
volume) + β2(externalizing behavior CBCL score) + β3(left 
amygdala volume) + β4(age) + β5(gender) + β6(intracranial 
volume) + β7(scanner) + ej.

Resting‑state functional connectivity

Similar to prior studies examining the relationship between 
cortico-amygdalar connectivity and internalizing/external-
izing behavior (Ibrahim et al. 2019; Stoddard et al. 2017), 
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we assessed functional connectivity using a seed-based func-
tional connectivity approach with the left and right amyg-
dala as seed ROIs. Mean time series for each amygdala ROI 
were correlated with the time series of each cortical vertex 
using the ciftify_seed_corr function from the ciftify pipeline. 
Externalizing or internalizing behavior was regressed onto 
the functional connectivity between the amygdala ROI and 
each cortical vertex, controlling for age, gender, and scanner. 
PALM with TFCE was used to control for multiple compari-
sons across cortical vertices.

White matter connectivity

Using R (version 3.5.0), internalizing and externalizing 
behavioral scores were regressed onto left or right UF and 
CB for FA and MD metrics, controlling for age and gen-
der. An FDR correction was applied to the primary analyses 
examining associations between behavior and left or right 
CB and UF diffusion metrics.

Interaction effects

To examine whether association patterns differed between 
diagnostic groups, behavior-by-diagnosis interaction terms 
were fit in separate models to examine whether brain-behav-
ior relationships were influenced by diagnostic status.

Planned subsample analysis

Given the potential for considerable behavioral and brain 
change over time in a developing sample (Bos et al. 2018), a 
sensitivity analysis was conducted in a subset of participants 
whose brain scan was obtained within one month of com-
pletion of their CBCL data (see Figure S2 in supplemental 
materials for subsample details).

Post‑hoc age‑by‑behavior interaction

Given that prior work has found age-specific relationships 
between externalizing/internalizing behaviors and cortico-
amygdalar connectivity properties (Andre et al. 2019; Duch-
arme et al. 2014; Vijayakumar et al. 2017), age-by-behavior 
interaction terms were examined (see details in supplemen-
tary Sect. 8).

Post‑hoc bootstrap resampling analysis

In light of recent calls for increased efforts to assess reliabil-
ity of reported results (Button et al. 2013) due to the lack of 
replicability of neuroimaging research findings (Ioannidis, 
2018; Simmons et al. 2011; He et al. 2020), we used boot-
strap resampling to assess the stability and reliability for 
the brain-behavior models which address the main aims 

of the current study (i.e., models that examined the main 
effect of externalizing or internalizing behavior across cor-
tico-amygdalar connectivity indices in the current sample). 
Using a case-resampling bootstrap (Monte Carlo) approach, 
1000 iterations of each data (i.e., design) matrix were gen-
erated and used to perform repeated linear regressions for 
each generated sample. Each iteration of the data matrix 
randomly selected participants with replacement until the 
total sample size was reached (e.g., n = 346 for the main 
structural covariance models). Stability of the models were 
assessed using the bootstrap resampled standard errors of 
the regression coefficients (McIntosh and Lobaugh 2004; 
Efron and Tibshirani 1986). The reliability of assessed mod-
els was evaluated by examining the distributions (i.e., stand-
ard deviations) of the resampled model parameter estimates 
(i.e., regression coefficients, t-statistics, and effect sizes; 
Himberg et al. 2004). Stable and reliable models feature 
near-zero standard errors and low standard deviations of 
parameter estimates (McIntosh and Lobaugh 2004; Efron 
and Tibshirani 1986). For the structural covariance and func-
tional connectivity models, bootstrap resampling was con-
ducted in PALM and parameter estimates were calculated 
at each vertex. For the white matter connectivity models, 
each model was analyzed in RStudio and the standard errors 
of each model regression coefficients were calculated (see 
supplementary Sect. 7 for more details about the bootstrap 
resampling analysis). In addition to the bootstrap resampling 
analysis, a post-hoc power analysis was used to confirm 
that our study was adequately powered (see supplementary 
Sect. 8 for details and results of this analysis).

Results

Participant information

Characteristics of the analyzed sample are shown in Table 1. 
Following removal of participants outside the 6–18 year age 
range, those with a time window greater than 12 months 
between acquired scan and behavioral assessment date 
and those who failed QC, a total of 346 participants were 
included for structural covariance, 299 participants for rest-
ing-state functional connectivity and 157 participants for 
white matter connectivity analyses (see Fig. 1 for consort 
diagram). Across all image modalities, there were no signifi-
cant differences in externalizing and internalizing behavior 
scores between the total POND sample scanned at SickKids 
by January 2020 (n = 611) and the subsample analyzed in the 
current study, nor were there any differences in age, gender, 
or diagnostic composition (see supplementary Sect. 4 for 
further details). A significant positive correlation between 
age and internalizing behaviors was found within each of the 
analyzed samples (T1w sample: r = 0.17, p < 0.001, rsfMRI 
sample: r = 0.15, p = 0.009, and DWI sample: r = 0.22, 
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p = 0.005). A significant negative correlation between age 
and externalizing behaviors was found in the T1w sample 
(r = − 0.11, p = 0.044). There were no significant differences 
in age (F = 1.44, p = 0.24), internalizing (F = 0.03, p = 0.87) 
or externalizing (F = 0.41, p = 0.66) behaviors between 
participants included in T1w, rs-fMRI, and DWI samples. 
There were significant relationships between internalizing 
and externalizing scores across each of the imaging sam-
ples: T1w (r = 0.49, p < 0.001), rs-fMRI (r = 0.51, p < 0.001), 
and DWI samples (r = 0.53, p < 0.001). In the T1 and rs-
fMRI samples, there was a significant difference in diag-
nostic composition across the scanner upgrade (X2 = 32.48, 
p < 0.001), consistent with the increased number of TDC 
participants that were scanned post upgrade.

Cortico‑amygdalar structural covariance

No significant interaction effects between either internal-
izing or externalizing behavior score and left or right amyg-
dala volume on vertex-wise cortical thickness were found. 
No significant effects were found when diagnostic status was 
included as an interaction term (i.e., diagnostic status-by-
externalizing/internalizing behavior-by-left/right amygdala 

volume on cortical thickness). Figure  2 illustrates the 
unthresholded p-maps of the relationship between external-
izing and internalizing behavior and left cortico-amygdalar 
structural covariance/functional connectivity.

Functional and white matter connectivity

No significant associations were found between either exter-
nalizing or internalizing behavior and the time series cor-
relations between left or right amygdala volume and each 
cortical vertex (Fig. 2), nor were there significant interac-
tion effects found between externalizing or internalizing 
and diagnostic status on functional connectivity. Similarly, 
there were no significant associations found between either 
behavioral domain and FA or MD of the left or right UF or 
CB (Table 2, Fig. 3). No diagnosis-by-behavior interaction 
effects were found across the functional and white matter 
connectivity models.

Planned subsample analysis

Findings remained the same for the structural covariance 
and functional connectivity analyses among the subset of 

Table 1  Demographic characteristics of the analyzed sample

This table shares the CBCL T-scores which are normalized for age and gender. The statistical analyses, however, used CBCL raw scores (not 
normalized for age and gender)
ASD autism spectrum disorder, ADHD attention-deficit/hyperactivity disorder, OCD obsessive compulsive disorder, TDC typically developing 
children

Characteristic Total ASD ADHD OCD TDC X2 p value

T1w Sample
 N 346 140 100 53 53
 Males 257 114 76 33 34 12.15 0.016

Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) F-statistic p value
Age (in years) 11.72(2.88) 12.19(3.09) 10.74(2.44) 12.66(2.36) 11.38(2.89) 6.17  < 0.001, 

ADHD < TDC < ASD, 
OCD

CBCL total T score 61.57(11.86) 65.51(8.81) 65.28(9.71) 62.21(8.71) 44.23(9.37) 33.5  < 0.001, ASD, ADHD, 
OCD > TDC

CBCL externalizing behav-
ior T score

56.33(12.17) 59.32(10.74) 60.68(11.44) 54.23(10.81) 42.94(7.86) 17.52  < 0.001, ASD, ADHD, 
OCD > TDC

CBCL Internalizing behav-
ior T score

61.45(11.4) 64.5(9.7) 61.98(10.83) 65.54(9.47) 48.59(9.33) 17.9  < 0.001, ASD, ADHD, 
OCD > TDC

Full scale IQ (age-depend-
ent)

100.9(19.24) 95.31(21.32) 100.9(14.83) 112.7(21.88) 110.9(10.46) 9.41  < 0.001, 
ASD < ADHD < OCD, 
TDC

rs-fMRI sample
Total ASD ADHD OCD TDC X2 p value

N 299 113 85 50 51
Males 214 88 61 31 34 4.04 0.26
DWI sample
N 157 78 38 31 10
Males 119 62 32 22 3 13.87 0.003
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participants with a time-gap of one month or less between 
imaging acquisition and behavioral assessments. Among the 
white matter connectivity models, there was a significant 

association between MD of the right UF and externalizing 
behavior, however, this association no longer remained when 
participants with outlier MD values were removed (Figure 

Fig. 2  Unthresholded spatial p-map of the relationship between exter-
nalizing/internalizing behaviors and cortico-amygdalar structural and 
functional connectivity. A Unthresholded spatial p-maps depicting 
the relationship between the interaction of externalizing and inter-
nalizing behavior and left amygdala volume on each cortical vertex. 

B Unthresholded spatial p-maps depicting the relationship between 
externalizing and internalizing behavior and functional connectiv-
ity between the left amygdala seed and each cortical vertex. A logp 
value of 1.6 is considered significant. As seen in the figure, none of 
the results reached this significance threshold

Table 2  Linear model results of 
the white matter connectivity 
analysis

UF uncinate fasciculus, CB cingulum bundle, FA fractional anisotropy, MD mean diffusivity

White matter tract Behavioral variable Beta 95% CI (X, X) t(2,153) p value

Left UF FA Externalizing behavior − 0.005 (− 0.0006, 0.00058) − 0.062 0.95
Internalizing behavior 0.092 (− 0.00028, 0.00103) 1.13 0.261

Left UF MD Externalizing behavior 0.043 (− 4.61e-07, 8.12e-07) 0.546 0.59
Internalizing behavior − 0.046 (− 9.01e-07, 4.92e-07) − 0.58 0.562

Right UF FA Externalizing behavior 0.012 (− 0.00047, 0.00054) 0.131 0.896
Internalizing behavior 0.009 (− 0.0005, 0.00058) 0.105 0.917

Right UF MD Externalizing behavior 0.139 (− 4.55e-08 1.09e-06) 1.818 0.071
Internalizing behavior 0.024 (− 5.34e-07, 7.29e-07) 0.304 0.761

Left CB FA Externalizing behavior − 0.009 (− 0.00056, 0.00049) − 0.13 0.897
Internalizing behavior − 0.039 (− 0.00073, 0.00042) − 0.53 0.597

Left CB MD Externalizing behavior 0.109 (− 7.5e-08, 6.95e-07) 1.592 0.113
Internalizing behavior 0.028 (− 3.3e-07, 5.13e-07) 0.405 0.68

Right CB FA Externalizing behavior − 0.003 (− 0.0005, 0.0005) − 0.041 0.967
Internalizing behavior − 0.039 (− 0.00074, 0.00042) − 0.53 0.597

Right CB MD Externalizing behavior 0.109 (− 7.49e-08, 6.97e-07) 1.592 0.113
Internalizing behavior 0.028 (− 3.4e-07 5.1e-07) 0.405 0.69
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S7). There was a main effect of externalizing behavior on 
the MD of the right CB, such that higher MD was associated 
with greater externalizing behavior (Figure S8) which did 
not survive the FDR significance threshold  (F3,106 = 16.6, 
 pModel < 0.001,  tExternalizing = 2.19,  pExternalizing = 0.03). There 
were no other significant associations found between FA or 
MD of the left or right UF or CB.

Post‑hoc bootstrap resampling analysis

See Fig. 4 for structural covariance and functional con-
nectivity bootstrap resampling analyses (and Figure S9 for 
other models) plotting the regression coefficients and their 
standard errors at each vertex (Panel A). Across all models, 
the regression coefficients based on 1000 generated boot-
strapped resampled models were near zero (< 0.01; low sig-
nal) with respective standard errors near zero (< 0.001; low 
noise). Vertices with a t-statistic greater than an absolute 
value of 4 served as a proxy for a high signal vertex and 

are depicted in pink in Fig. 4. The figure illustrates the low 
standard errors of the regression coefficients (< 0.001) pre-
sent for both high and low signal vertices, indicating that 
the results of the models examined in the current study are 
stable. As can be seen in Panels B-D, providing an exam-
ple of bootstrap parameter estimates for models examining 
associations between externalizing behavior and cortico-left 
amygdalar structural and functional connectivity, the distri-
bution (standard deviations) of the three mean model param-
eter estimates (i.e., regression coefficients, t-statistics and 
effect sizes, averaged across 1000 iterations) are centered 
around zero for both structural covariance and functional 
connectivity analyses. For the white matter connectivity 
models, the bootstrapped standard errors of the regression 
coefficients were also near zero and nearly all models fea-
tured bootstrapped confidence intervals which included zero 
(Table S5). See Figure S10 and Table S6 for bootstrap resam-
pled results for the sensitivity analyses. The power analysis 
revealed that the current study was powered to detect effect 

Fig. 3  Relationship between externalizing or internalizing behavior 
and fractional anisotropy and mean diffusivity (units:  mm2/s) of the 
two white matter tracts of interest: the cingulum bundle and uncinate 
fasciculus. The depicted relationships are all non-significant. The 
black line is the regression line and the shaded gray area is the confi-
dence interval. These figures include all data points, including poten-

tial outliers. Analyses were run with and without outlier removal; 
the results remained non-significant in either case. ADHD attention 
deficit hyperactivity disorder, ASD autism spectrum disorder, OCD 
obsessive compulsive disorder, CTRL healthy control/typically devel-
oping
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sizes as small as d = 0.05–0.07 (see details in supplementary 
Sect. 8).

Post‑hoc age‑by‑behavior interaction effects

There were no age-by-externalizing or internalizing behav-
ior interaction effects found on cortico-amygdalar struc-
tural covariance, functional connectivity, or white matter 

Fig. 4  This figure depicts the 
bootstrap resampling results for 
the models examining associa-
tions between the externalizing 
behavior-left amygdala inter-
action term and whole brain 
structural covariance and func-
tional connectivity. All other 
models examined feature similar 
results as those depicted here 
(see supplementary). In Panel 
A, the scatterplots illustrate 
associations between the mean 
regression coefficient (averaged 
across 1000 bootstrapped resa-
mples) and the bootstrapped 
standard errors of the regression 
coefficients of each vertex for 
the structural covariance and 
functional connectivity models. 
Pink points depict the vertices 
with a higher signal (a t-statistic 
greater than 4). Blue points 
depict the vertices with low sig-
nal (t-statistic less than 4). The 
low standard errors found for 
both high and low signal verti-
ces indicate stable results across 
resampling. Panel B depicts the 
histogram of the mean regres-
sion coefficients of each vertex 
across the 1000 bootstrapped 
resampled analyses (distribu-
tion–structural covariance: 
2.56e-06 ± 1.37e-05; functional 
connectivity: 0.0002 ± 0.004). 
Panel C depicts the histogram 
of the mean t-statistic of each 
vertex across the 1000 boot-
strapped resampled analyses 
(distribution–structural covari-
ance: 0.357 ± 1.91; functional 
connectivity: 0.119 ± 1.99). 
Panel D depicts the histo-
gram of the mean effect size 
of the model at each vertex 
across the 1000 bootstrapped 
resampled analyses (distribu-
tion—structural covariance: 
8.45e-06 ± 4.66e-05; functional 
connectivity: 0.00045 ± 0.009). 
Note, all model parameter 
distributions (B-D) are centred 
around zero. The density y-axis 
in panels B-D figures is the 
number of points (i.e., vertices) 
that are in each histogram bin
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connectivity metrics (see supplementary Sect. 8, Figure S11, 
Table S7).

Discussion

Using a multi-modal imaging framework, the current study 
did not find continuous (dimensional) linear relationships 
between cortico-amygalar connectivity properties and exter-
nalizing or internalizing behaviors across a transdiagnostic 
sample including TDC and children with ASD, ADHD, 
or OCD. Further, our results do not suggest that the brain-
behavior patterns examined differed by diagnostic group. 
The results of our post-hoc bootstrap resampling analyses 
indicate that the null results found in the present study are 
both stable and reliable.

Previous neuroimaging studies have found significant 
linear associations between internalizing or externaliz-
ing behavior and cortico-amygdalar connectivity metrics. 
Table S3 highlights studies which have examined this rela-
tionship with a focus on those that characterized externaliz-
ing and internalizing behaviors using the CBCL. Prior stud-
ies examining these relationships typically included small 
sample sizes (range: n = 21–291, with most studies including 
less than 100 participants). The majority of these studies 
conducted their analysis on typically developing samples, 
which feature limited variability of behavioral scores, when 
compared to a large transdiagnostic sample. Among TDC 
samples, lower rates of externalizing and internalizing 
behaviors have been shown to be associated with greater 
cortico-amygdalar connectivity across different modalities 
(e.g., increased structural covariance or functional connec-
tivity between the amygdala and cortical regions). Impor-
tantly, studies that investigated this relationship in transdi-
agnostic samples found positive and negative relationships 
between externalizing/internalizing behaviors and functional 
connectivity (Chabernaud et al. 2012; Ibrahim et al. 2018), 
suggesting that brain-behavior relationship profiles may 
vary within heterogeneous samples. Among the prior studies 
included in Table S3, smaller effect sizes were found among 
studies with larger samples (Albaugh et al. 2016; Ameis 
et al. 2014; Vijayakumar et al. 2017). Further, many of 
these studies featured a narrower range of internalizing and 
externalizing behavioral scores across examined samples 
(e.g., current study range = 33–87 vs. T-score range ~ 30–70 
in Ameis et al. 2014; Saxbe et al. 2018; Chabernaud et al. 
2012; Karlsgodt et al. 2017; Qin et al. 2014). It is possible 
that the narrower behavioral heterogeneity compared to that 
included in the current study sample may have contributed 
to differences between the results reported here and find-
ings of prior studies. Thus, the null results of the current 
study may not contradict prior findings as, to our knowledge, 
this is the only study examining the relationship between 

parent-reported externalizing/internalizing behaviors and 
multimodal cortico-amygdalar connectivity in a transdiag-
nostic NDD sample.

The current study featured a moderate-to-large sample 
size and was powered to detect very small effect sizes for 
each individual linear model (Cohen’s d ~ 0.04–0.07, sup-
plementary Sect. 8), thus indicating that our null results were 
unlikely due to lack of power. Further, we examined the sta-
bility and reliability of our null results using bootstrap resa-
mpling. Using the bootstrap resampling analysis, instability 
of the model findings (which could be due to underpowered 
models and/or highly noisy data) can be detected through the 
standard errors of the model parameters. In the current study, 
our post-hoc bootstrap resampling analysis showed near-zero 
standard errors of regression coefficients for the main mod-
els (across both low and high signal vertices), indicating 
stability of the findings of the current study. The bootstrap 
resampling analysis indicated that the standard deviations 
for the model parameter estimates examined were also con-
sistently centered around zero with low standard deviations, 
suggesting that the null models found in the current study are 
also reliable (McIntosh and Lobaugh, 2004; Efron and Tib-
shirani 1986; Himberg et al. 2004). Thus, the results of the 
power analysis and our bootstrap resampling provide further 
confidence that the current study was unlikely to be under-
powered. Instead, the results of the power analysis in addi-
tion to the small effect sizes found across the bootstrap resa-
mpled models (d < 0.001; Fig. 4), could suggest that there is 
no meaningful linear relationship between externalizing or 
internalizing behavior, as measured, and cortico-amygdalar 
connectivity properties present across a heterogeneous trans-
diagnostic clinical sample of children with different NDDs.

Although the current study examined cortico-amygdalar 
connectivity across three imaging modalities, it is important 
to note that behavioral traits were assessed through a single 
broad-band parent-report measure. Delineating brain-behav-
ior relations relevant to internalizing or externalizing behav-
iors in heterogeneous clinical samples may benefit from 
incorporating multi-modal measures of behavior (e.g., task-
based fMRI using behavioral relevant tasks). Multi-modal 
measures of behavior may enhance measurement precision 
compared to the use of a parent-report behavioral measure 
alone. Two previous studies have examined brain-behavior 
relationships in transdiagnostic samples using both symptom 
measures and task-based fMRI. Ibrahim et al. found a nega-
tive association between cortico-amygdalar connectivity 
during an emotion perception task and externalizing behav-
ior across children with ASD, with or without co-occurring 
disruptive behavior disorders (Ibrahim et al. 2019). Stoddard 
et al. found that amygdala-prefrontal cortical connectivity 
during viewing of intensely angry faces was associated with 
different behavioral profiles across a sample of children with 
ADHD, disruptive behavior disorders, anxiety disorders or 
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TDC, whereby decreased connectivity was associated with 
high levels of anxiety and irritability, and lower connectivity 
was associated with high anxiety but low irritability (Stod-
dard et al. 2017).

A number of strengths and limitations of the current study 
require consideration. First, considering the growing con-
cern of statistical practices which may contribute to false 
positive results or inflated effect sizes (Marek et al. 2020; 
Poldrack et al. 2017), we made use of non-parametric sta-
tistics (Eklund et al. 2016) (i.e. TFCE; (Smith and Nichols 
1996)) to reduce risk of inflation for any potential associa-
tions found. Additionally, a standardized QC protocol was 
implemented across all imaging modalities to reduce the 
likelihood for findings to be driven by artefacts or motion 
(Backhausen et al. 2016; Pardoe et al. 2016). This resulted 
in an exclusion rate of 16.8–23.7% across imaging modali-
ties based on image QC (that is, following initial exclusion 
of participants based on age, missing data and > 12-month 
time-gap between imaging and behavioral assessments), 
which is comparable to previous studies examining pedi-
atric samples or using standardized QC approaches (Ameis 
et al. 2014; Ducharme et al. 2014; Xia et al. 2018) and in 
line with higher in-scanner motion in pediatric and clinical 
samples (Pardoe et al. 2016). While applying this rigorous 
QC approach is beneficial (particularly in a pediatric clini-
cal sample), this limited our ability to leverage more of the 
total data available from POND. T1-weighted and rs-fMRI 
acquisitions for this sample were collected across a scanner 
upgrade, potentially introducing scanner-related confounds 
not captured by our statistical approaches. Further, while the 
parent-report behavioral measures of internalizing or exter-
nalizing behaviors used here have been used in prior brain-
behavior studies (Albaugh et al. 2016; Ameis et al. 2014; 
Ducharme et al. 2014, 2011; Ibrahim et al. 2019), inclusion 
of additional measures (e.g., self-report behavioral or cogni-
tive) may provide a more sensitive proxy of the behavioral 
domain of interest. Finally, given the increased variance 
present in our heterogeneous transdiagnostic NDD sample, 
which is likely present at both the behavioral and brain level 
(see Table 1, S3) (Dajani et al. 2016; Dickie et al. 2018; Fair 
et al. 2012), other analytic approaches including clustering 
methods and other data-driven algorithms (e.g., canonical 
correlation analysis or supervised machine learning (Lom-
bardo et al. 2019; Feczko et al. 2019; Xia et al. 2019)) may 
be advantageous in future brain-behavior research than the 
more conventional univariate approaches (as in the linear 
models used here). Such analyses would need to establish 
whether newly identified clusters are robust and clinically 
meaningful. While employing such approaches is outside 
the scope of the aims of the current study, initial reports 
from cluster analyses applied to the POND sample indi-
cate the potential for data-driven approaches to be useful in 

identifying subgroups of children with different NDD diag-
noses (Jacobs et al. 2020; Kushki et al. 2019).

Conclusion

Producing consistent results that are generalizable and 
replicable has been challenging in clinical and cognitive 
neuroscience (Ioannidis, 2018; Simmons et al. 2011) as 
suggested by reports of non-replication (He et al. 2020) 
and inconsistent findings (Uddin et al. 2017) (Dajani et al. 
2019; Masouleh et al. 2019). Null reports are necessary to 
refine methodological approaches which can inform future 
research. Contrary to our hypotheses, the stability and reli-
ability of the null result found across three imaging modali-
ties in the current study provides support for the absence of 
a dimensional linear association between externalizing or 
internalizing behavior and cortico-amygdalar connectivity 
across a heterogeneous group of children with different NDD 
diagnoses and TDCs. Future work exploring brain-behavior 
relations relevant to internalizing and externalizing domains 
in transdiagnostic samples may benefit from the use of addi-
tional clinical/cognitive/behavioral assessments (including 
multi-informant reports or relevant task-based fMRI), and 
data-driven analytical approaches to delineate subgroups 
with different brain-behavior profiles.
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