94 research outputs found

    miRNA-223 expression in patient-derived eutopic and ectopic endometrial stromal cells and its effect on epithelial-to-mesenchymal transition in endometriosis

    Get PDF
    Objective: This study was designed to evaluate the expression of microRNA-223 (miRNA-223) in patient-derived eutopic and ectopic endometrial stromal cells (SCs). Given the fact that miRNA-223 was previously shown to be upregulated in these cells and that this upregulation has been linked to epithelial-to-mesenchymal transition (EMT) during endometriosis, this study aimed to further explore the expression of miRNA-223, its effect in endometriosis, and the mechanisms underlying its effects. Methods: Endometrial tissue was collected from 26 patients with endometriosis and 14 patients with hysteromyoma (control group). Primary endometrial SCs were isolated and cultured from several endometrial samples and miRNA-223 expression was evaluated using qRT-PCR. Cells were then transfected with a miRNA-223 overexpression lentiviral vector (sh-miR-223 cells) or an empty control (sh-NC cells) and then used to monitor the effects of miRNA-223 on the expression of several EMT-associated proteins, including N-cadherin, vimentin, and Slug, using western blot. Cellular migration, invasion, and proliferation were then evaluated using a wound healing, Transwell, and CCK-8 assay, respectively. Flow cytometry was used to detect apoptosis. Results: There was a significant decrease in the expression of miRNA-223 in both eutopic and ectopic endometrial SCs (p < 0.05) whereas upregulation of miRNA-223 inhibited the expression of EMT-related molecules and reduced cell migration, invasion, and proliferation. High levels of miRNA-223 also promoted apoptosis. Conclusion: miRNA-223 expression decreased in endometrial SCs from endometriosis patients, which may facilitate the differential regulation of EMT during endometriosis. Clinical Trial registration number: SWYX2020-211

    Reliability Analysis of Metro Door System Based on Fuzzy Multi-State Bayesian Network

    Get PDF
    Considering the shortcomings of the fault tree analysis (FTA) method in the reliability analysis of metro door systems, Bayesian network (BN) and fuzzy theory were introduced to establish the failure probability model of a metro door system. A fault tree of the metro door system was established based on the structure of the metro door, the operation data record and the practical experience of relevant engineers. The BN of the metro door system was constructed based on the fault tree. For the problem that the prior probabilities of root nodes with missing data were unavailable, fuzzy theory was introduced to convert the expert language values on these missing data nodes to corresponding prior probabilities, which were substituted into the BN along with the root nodes whose prior probabilities were obtained from the operation fault data to calculate the leaf node probability. Cause analysis of the metro door system was performed with bi-directional reasoning of BN, which provided a way to find the key factors that caused door faults and the metro door system fault probabilities

    Application and Curative Effect of Micro-implant Anchorage in Orthodontics

    Get PDF
    Purpose: To explore and analyze the curative effects of micro - implant anchorages in orthodontics.Methods: A retrospective analysis of 65 patients undergoing orthodontic treatment in Department of Stomatology, Binzhou Medical University Hospital, Shandong, China was carried out. Thirty four cases in the treatment group were treated with a micro-implant as the anchorage, while 31 cases of the control group were treated with a palatal bar and facebow as the anchorage, and the curative results of the two groups were then compared.Results: After a 13-month treatment, both anchorages were clinically effective, but the micro-implant anchorage showed higher efficacy. Measurement indices for the test group, including sella-nasion - A point (SNA) angle (- 1.88 ± 0.71), sella-nasion-B point (SNB) angle (1.39 ± 0.42), A point - nasion - B point (ANB) angle (- 2.40 ± 0.83), upper central incisor - lower central incisor (U1 - L1) angle (25.79 ± 5.90), upper central incisor - sella - nasion (U1 - SN) angle (- 10.13 ± 3.68), lower central incisor – mandibular plane (L1 - MP) angle (- 4.22 ± 0.45), upper central incisor - nasion - A point (U1 - NA) angle (- 1.32 ± 1.35) and lower central incisor - nasion - B point (L1 - NB) angle (- 1.32 ± 1.35) of the test group were significantly different those of the control group Overbite (OB), overjet (OJ), intercanine width and the width of the first molars of treatment and control groups were also remarkably). Moreover, micro-implant was observed to be more stable during treatment.Conclusion: Compared with traditional anchorages, micro-implants possess the advantages of slighter trauma, simpler operation, more reliable curative effect and high stability.Keywords: Micro-implant anchorage, Orthodontics, Facebow anchorage, Oral medicine, Clinical efficac

    Tunable nonlinear optical bistability based on Dirac semimetal in photonic crystal Fabry-Perot cavity

    Full text link
    In this paper, we study the nonlinear optical bistability (OB) in a symmetrical multilayer structure. This structure is constructed by embedding a nonlinear three-dimensional Dirac semimetal (3D DSM) into a solution filled one-dimensional photonic crystal Fabry-Perot cavity. OB stems from the third order nonlinear conductivity of 3D DSM and the local field of resonance mode could enhance the nonlinearity and reduce the thresholds of OB. This structure achieves the tunability of OB due to that the transmittance could be modulated by the Fermi energy. OB threshold and threshold width could be remarkably reduced by increasing the Fermi energy. Besides, it is found that the OB curve depends heavily on the angle of incidence of the incoming light, the structural parameters of the Fabry-Perot cavity, and the position of 3D DSM inside the cavity. After parameter optimization, we obtained OB with a threshold of 106 V/m. We believe this simple structure provides a reference idea for realizing low threshold and tunable all optical switching devices. Keywords: Optical bistability, Dirac semimetal, Fabry-Perot cavity

    Impact of the COVID-19 lockdown on air pollution in an industrial city in Northeastern China

    Get PDF
    Many studies in China investigated how the lockdown following the coronavirus disease 2019 substantially affected air quality; however, few were conducted in Northeastern China. Here, the changes in six criteria air pollutants, including particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3), were investigated in Shenyang from January to May 2015–2020. Compared with the pre-lockdown, the mass concentrations of PM2.5, PM10, SO2, NO2, and CO during the lockdown decreased by 40.3% to 48.6%, indicating a positive impact of lockdown policies on reducing pollutant emissions. The responses of PM2.5, PM10, and CO to the lockdown measures in downtown areas were more sensitive than in the suburbs. However, the O3 concentration showed the opposite trend, attributed to the drop in NOx and particulate matters. Compared to the same period in 2015–2019, the proportion of days with good air quality increased from 63.2% to 77.2% during the lockdown and Shenyang experienced no severe pollution. Our results suggest that reducing human activities can improve air quality; however, coordinated control policies of O3, PM2.5, and NO2 are imperative.

    Accelerated discovery of molecular nanojunction photocatalysts for hydrogen evolution by using automated screening and flow synthesis

    Get PDF
    Discovering and optimizing multicomponent organic semiconductors is typically a laborious process. High-throughput experimentation can accelerate this, but the results of small-scale screening trials are not always transferable to bulk materials production. Here we report the accelerated discovery of molecular nanojunction photocatalysts based on a combinatorial donor–acceptor molecular library assisted by high-throughput automated screening. The knowledge gained from this high-throughput batch screening is then transferred to a scaled-up, flow-based synthesis process. The scaled-up molecular nanojunction MTPA-CA:CNP147 (3-(4-(bis(4-methoxyphenyl)amino)phenyl)-2-cyanoacrylic acid:2,6-bis(4-cyanophenyl)-4-(4′-fluoro-[1,1′-biphenyl]-4-yl)pyridine-3,5-dicarbonitrile) exhibits a sacrificial hydrogen evolution rate of 330.3 mmol h−1 g−1 with an external quantum efficiency of 80.3% at 350 nm, which are among the highest reported for an organic photocatalyst. A one-dimensional nanofibre architecture is identified for this molecular nanojunction, which exhibits efficient charge separation. Electronic structure–property correlations across the photocatalyst library show that a moderate binding energy between the donor and the acceptor molecules is a potential factor for efficient molecular nanojunction formation

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Research On The Architecture And Strategy Of Luxury brands Marketing Service Design Model From The Perspective Of Big Data

    No full text
    With the development of social economy and the continuous popularization of Internet information technology, luxury brands marketing has improved brand competitiveness by combining new marketing methods in this era. Based on this, the purpose of this article is to use service design to improve the precise marketing strategy of luxury brands, and to study the current situation of luxury brands marketing and service design theory in the era of big data. Combining the existing research results of service design with the unique attributes of luxury brands marketing, by establishing the implementation path and theoretical model of introducing service design into luxury brands marketing, verifying the important role of service design in luxury brands marketing, and from this put forward the design model and feasibility strategies of marketing services for luxury brands

    Research On The Architecture And Strategy Of Luxury brands Marketing Service Design Model From The Perspective Of Big Data

    Get PDF
    With the development of social economy and the continuous popularization of Internet information technology, luxury brands marketing has improved brand competitiveness by combining new marketing methods in this era. Based on this, the purpose of this article is to use service design to improve the precise marketing strategy of luxury brands, and to study the current situation of luxury brands marketing and service design theory in the era of big data. Combining the existing research results of service design with the unique attributes of luxury brands marketing, by establishing the implementation path and theoretical model of introducing service design into luxury brands marketing, verifying the important role of service design in luxury brands marketing, and from this put forward the design model and feasibility strategies of marketing services for luxury brands
    • …
    corecore