91 research outputs found
Glucocorticoid-induced cell death is mediated through reduced glucose metabolism in lymphoid leukemia cells
Malignant cells are known to have increased glucose uptake and accelerated glucose metabolism. Using liquid chromatography and mass spectrometry, we found that treatment of acute lymphoblastic leukemia (ALL) cells with the glucocorticoid (GC) dexamethasone (Dex) resulted in profound inhibition of glycolysis. We thus demonstrate that Dex reduced glucose consumption, glucose utilization and glucose uptake by leukemic cells. Furthermore, Dex treatment decreased the levels of the plasma membrane-associated glucose transporter GLUT1, thus revealing the mechanism for the inhibition of glucose uptake. Inhibition of glucose uptake correlated with induction of cell death in ALL cell lines and in leukemic blasts from ALL patients cultured ex vivo. Addition of di-methyl succinate could partially overcome cell death induced by Dex in RS4;11 cells, thereby further supporting the notion that inhibition of glycolysis contributes to the induction of apoptosis. Finally, Dex killed RS4;11 cells significantly more efficiently when cultured in lower glucose concentrations suggesting that modulation of glucose levels might influence the effectiveness of GC treatment in ALL. In summary, our data show that GC treatment blocks glucose uptake by leukemic cells leading to inhibition of glycolysis and that these effects play an important role in the induction of cell death by these drugs
Modulation of apoptosis by V protein mumps virus
<p>Abstract</p> <p>Background</p> <p>The Urabe AM9 vaccine strain of mumps virus contains two variants of V protein: VWT (of HN-A1081 viral population) and VGly (of HN-G1081). The V protein is a promoting factor of viral replication by blocking the IFN antiviral pathway.</p> <p>Findings</p> <p>We studied the relationship between V protein variants and IFN-α2b-induced apoptosis. V proteins decrease activation of the extrinsic IFN-α2b-induced apoptotic pathway monitored by the caspase 8 activity, being the effect greater with the VWT protein. Both V proteins decrease the activity of caspase 9 of the intrinsic apoptotic pathway. In a system without IFN, the VWT and VGly proteins expression promotes activation of caspases 3 and 7. However, when the cellular system was stimulated with IFN-α, this activity decreased partially. TUNEL assay shows that for treatment with IFN-α and ibuprofen of cervical adenocarcinoma cells there is nuclear DNA fragmentation but the V protein expression reduces this process.</p> <p>Conclusions</p> <p>The reduction in the levels of caspases and DNA fragmentation, suggesting that V protein, particularly VWT protein of Urabe AM9 vaccine strain, modulates apoptosis. In addition, the VWT protein shows a protective role for cell proliferation in the presence of antiproliferative signals.</p
Phase III trial of postoperative cisplatin, interferon alpha-2b, and 5-FU combined with external radiation treatment versus 5-FU alone for patients with resected pancreatic adenocarcinoma – CapRI: study protocol [ISRCTN62866759]
After surgical intervention with curative intention in specialised centres the five-year survival of patients with carcinoma of the exocrine pancreas is only 15%. The ESPAC-1 trial showed an increased five-year survival of 21% achieved with adjuvant chemotherapy. Investigators from the Virginia Mason Clinic have reported a 5-year survival rate of 55% in a phase II trial evaluating adjuvant chemotherapy, immunotherapy and external-beam radiation. DESIGN: The CapRI study is an open, controlled, prospective, randomised multi-centre phase III trial. Patients in study arm A will be treated as outpatients with 5-Fluorouracil; Cisplatin and 3 million units Interferon alpha-2b for 5 1/2 weeks combined with external beam radiation. After chemo-radiation the patients receive continuous 5-FU infusions for two more cycles. Patients in study arm B will be treated as outpatients with intravenous bolus injections of folinic acid, followed by intravenous bolus injections of 5-FU given on 5 consecutive days every 28 days for 6 cycles. A total of 110 patients with specimen-proven R0 or R1 resected pancreatic adenocarcinoma will be enrolled. An interim analysis for patient safety reasons will be done one year after start of recruitment. Evaluation of the primary endpoint will be performed two years after the last patients' enrolment. DISCUSSION: The aim of this study is to evaluate the overall survival period attained by chemo-radiotherapy including interferon alpha 2b administration with adjuvant chemotherapy. The influence of interferon alpha on the effectiveness of the patients' chemoradiation regimen, the toxicity, the disease-free interval and the quality of life are analysed. Different factors are tested in terms of their potential role as predictive markers
MiR-200c Regulates Noxa Expression and Sensitivity to Proteasomal Inhibitors
The pro-apoptotic p53 target Noxa is a BH3-only protein that antagonizes the function of selected anti-apoptotic Bcl-2 family members. While much is known regarding the transcriptional regulation of Noxa, its posttranscriptional regulation remains relatively unstudied. In this study, we therefore investigated whether Noxa is regulated by microRNAs. Using a screen combining luciferase reporters, bioinformatic target prediction analysis and microRNA expression profiling, we identified miR-200c as a negative regulator of Noxa expression. MiR-200c was shown to repress basal expression of Noxa, as well as Noxa expression induced by various stimuli, including proteasomal inhibition. Luciferase reporter experiments furthermore defined one miR-200c target site in the Noxa 3′UTR that is essential for this direct regulation. In spite of the miR-200c:Noxa interaction, miR-200c overexpression led to increased sensitivity to the clinically used proteasomal inhibitor bortezomib in several cell lines. This apparently contradictory finding was reconciled by the fact that in cells devoid of Noxa expression, miR-200c overexpression had an even more pronounced positive effect on apoptosis induced by proteasomal inhibition. Together, our data define miR-200c as a potentiator of bortezomib-induced cell death. At the same time, we show that miR-200c is a novel negative regulator of the pro-apoptotic Bcl-2 family member Noxa
Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells
<p>Abstract</p> <p>Background</p> <p>Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells.</p> <p>Methods</p> <p>Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR.</p> <p>Results</p> <p>SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation.</p> <p>Conclusions</p> <p>These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ.</p
"201 artiklar"
Berättelsen om mediernas hantering av världens första feministiska parti
To catch a killer : On the mechanisms of interferon alpha induced apoptosis
A major clinical problem regarding treatment of malignant tumours is
primary or secondary resistance to therapy. Anti-tumour drugs act
primarily by induction of apoptosis. However, the knowledge of how
various substances induce apoptosis is still incomplete, and so is the
reason for the great variation in cellular sensitivity to these drugs.
The aim of this thesis was to characterize the pro-apoptotic signalling
mechanisms induced by IFNalpha and to investigate the importance of the
underlying genotype on the cellular sensitivity to IFNalpha-treatment.
ITN can exert prominent anti-cancer activities in some malignancies.
However, the mechanism(s) of IFN's and-tumour activity is not clear, but
induction of apoptosis has become a commonly accepted putative mechanism.
In this thesis the molecular background to IFNalpha-induced apoptosis in
malignant cell fines was investigated. Apoptosis induced by ITNalpha
depends on activation of caspases, and activation of caspase-8 was found
to be a triggering event in the caspase cascade. Furthermore, we show
involvement of the mitochondrial pathway as demonstrated by activation of
the pro-apoptotic Bcl-2 family members Bak and Bax, mitochondrial inner
membrane depolarization and release of cytochrome c.
We have also shown that IFNalpha activates the PI3K/mTOR pathway.
Signalling through PI3K/mTOR has been shown to primarily mediate
survival. However, in the case of IFNalphamediated activation, this
pathway is crucial for the apoptotic response. Inhibition of P13K as well
as mTOR completely abrogates IFNalpha-induced apoptosis. No effect from
inhibition of PI3K/mTOR is observed on the IFNalpha-induced classical
Jak-STAT signalling pathway, indicating that Jak-STAT signalling alone is
not sufficient to induce the apoptotic response to this cytokine.
Furthermore, the antiviral effects of 117Na-treatment are unaffected by
inhibition of PI3K/mTOR, hence this signalling pathway is crucial for
induction of specific effects, such as apoptosis.
The impact of activated oncogenes on the apoptotic response to IFNalpha
was also investigated. Introduction of a constitutive active form of the
STAT3 oncogene (STAT3C) was shown to inhibit IFN's pro-apoptotic
activity. The result of STAT3C expression is sustained STAT3/3
dimerization and nuclear translocation. STAT3C also rescued from the
IFNinduced downregulation of STAT3/3 dimers, possibly explaining its
ability to interfere with IFN-induced apoptosis. Furthermore, the
presence of the HPV-16 E7 oncogene was shown to sensitize cells to
apoptosis induced by IFN.
Delineation of the molecular background to IFN-induced apoptosis, and the
impact of oncogene activation on the cellular sensitivity to this effect,
may aid in an optimized use of IFNalpha in the treatment of patients with
cancer
Förutsättningar för chefer att hantera sjukfrånvaro
Godkännandedatum 2014-06-04</p
- …