379 research outputs found

    'Rapid fire' spectroscopy of Kepler solar-like oscillators

    Full text link
    The NASA Kepler mission has been continuously monitoring the same field of the sky since the successful launch in March 2009, providing high-quality stellar lightcurves that are excellent data for asteroseismology, far superior to any other observations available at the present. In order to make a meaningful analysis and interpretation of the asteroseismic data, accurate fundamental parameters for the observed stars are needed. The currently available parameters are quite uncertain as illustrated by e.g. Thygesen et al. (A&A 543, A160, 2012), who found deviations as extreme as 2.0 dex in [Fe/H] and log g, compared to catalogue values. Thus, additional follow-up observations for these targets are needed in order to put firm limits on the parameter space investigated by the asteroseismic modellers. Here, we propose a metod for deriving accurate metallicities of main sequence and subgiant solar-like oscillators from medium resolution spectra with a moderate S/N. The method takes advantage of the additional constraints on the fundamental parameters, available from asteroseismology and multi-color photometry. The approach enables us to reduce the analysis overhead significantly when doing spectral synthesis, which in turn will increases the efficiency of follow-up observations.Comment: 3 pages, 2 figures. Proceedings from Asteroseismology of Stellar Populations in the Milky Way 2013 to appear in 'Astrophysics and Space Science Proceedings

    The [Y/Mg] clock works for evolved solar metallicity stars

    Get PDF
    Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the logg\log g is determined to much higher precision than what is possible with spectroscopy. It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs.Comment: 5 pages, 3 figures, accepted for publication as a Letter to A&

    The chemical composition of red giants in 47 Tucanae I: Fundamental parameters and chemical abundance patterns

    Get PDF
    Context: The study of chemical abundance patterns in globular clusters is of key importance to constrain the different candidates for intra-cluster pollution of light elements. Aims: We aim at deriving accurate abundances for a large range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D LTE atmospheric models together with a combination of equivalent width measurements, LTE, and NLTE synthesis we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al and Ba. We find a mean [Fe/H] = 0.78±0.07-0.78\pm0.07 and [α/Fe]=0.34±0.03[\alpha/{\rm Fe}]=0.34\pm0.03 in good agreement with previous studies. The remaining elements show good agreement with the literature, but the inclusion of NLTE for Al has a significant impact on the behaviour of this key element. Conclusions: We confirm the presence of an Na-O anti-correlation in 47 Tucanae found by several other works. Our NLTE analysis of Al shifts the [Al/Fe] to lower values, indicating that this may be overestimated in earlier works. No evidence for an intrinsic variation is found in any of the remaining elements.Comment: 22 pages, 16 figures. Accepted for publication in A&

    KIC 4768731: a bright long-period roAp star in theKeplerfield

    Get PDF
    We report the identification of 61.45 d−1 (711.2 μHz) oscillations, with amplitudes of 62.6 μmag, in KIC 4768731 (HD 225914) using Kepler photometry. This relatively bright (V = 9.17) chemically peculiar star with spectral type A5 Vp SrCr(Eu) has previously been found to exhibit rotational modulation with a period of 5.21 d. Fourier analysis reveals a simple dipole pulsator with an amplitude that has remained stable over a 4-yr time span, but with a frequency that is variable. Analysis of high-resolution spectra yields stellar parameters of Teff = 8100 ± 200 K, log g = 4.0 ± 0.2, [Fe/H] = +0.31 ± 0.24 and v sin i = 14.8 ± 1.6 km s−1. Line profile variations caused by rotation are also evident. Lines of Sr, Cr, Eu, Mg and Si are strongest when the star is brightest, while Y and Ba vary in antiphase with the other elements. The abundances of rare earth elements are only modestly enhanced compared to other roAp stars of similar Teff and log g. Radial velocities in the literature suggest a significant change over the past 30 yr, but the radial velocities presented here show no significant change over a period of 4 yr

    Sounding stellar cycles with Kepler - II. Ground-based observations

    Full text link
    We have monitored 20 Sun-like stars in the Kepler field-of-view for excess flux with the FIES spectrograph on the Nordic Optical Telescope since the launch of Kepler spacecraft in 2009. These 20 stars were selected based on their asteroseismic properties to sample the parameter space (effective temperature, surface gravity, activity level etc.) around the Sun. Though the ultimate goal is to improve stellar dynamo models, we focus the present paper on the combination of space-based and ground-based observations can be used to test the age-rotation-activity relations. In this paper we describe the considerations behind the selection of these 20 Sun-like stars and present an initial asteroseismic analysis, which includes stellar age estimates. We also describe the observations from the Nordic Optical Telescope and present mean values of measured excess fluxes. These measurements are combined with estimates of the rotation periods obtained from a simple analysis of the modulation in photometric observations from Kepler caused by starspots, and asteroseismic determinations of stellar ages, to test relations between between age, rotation and activity.Comment: Accepted for publication in MNRA

    Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

    Get PDF
    Context : We still do not know which mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this issue. Aims: Our aim is to probe the radial dependance of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts. Methods: We first extract the rotational splittings and frequencies of the modes for six young Kepler red giants. We then perform a seismic modeling of these stars using the evolutionary codes CESAM2k and ASTEC. By using the observed splittings and the rotational kernels of the optimal models, we perform inversions of the internal rotation profiles of the six stars. Results: We obtain estimates of the mean rotation rate in the core and in the convective envelope of these stars. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, contrary to the RGB stars whose core has been shown to spin down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand. These results will bring observational constraints to the scenarios of angular momentum transport in stars.Comment: Accepted in A&A, 27 pages, 18 figure

    Characterizing two solar-type Kepler subgiants with asteroseismology: KIC10920273 and KIC11395018

    Full text link
    Determining fundamental properties of stars through stellar modeling has improved substantially due to recent advances in asteroseismology. Thanks to the unprecedented data quality obtained by space missions, particularly CoRoT and Kepler, invaluable information is extracted from the high-precision stellar oscillation frequencies, which provide very strong constraints on possible stellar models for a given set of classical observations. In this work, we have characterized two relatively faint stars, KIC10920273 and KIC11395018, using oscillation data from Kepler photometry and atmospheric constraints from ground-based spectroscopy. Both stars have very similar atmospheric properties; however, using the individual frequencies extracted from the Kepler data, we have determined quite distinct global properties, with increased precision compared to that of earlier results. We found that both stars have left the main sequence and characterized them as follows: KIC10920273 is a one-solar-mass star (M=1.00 +/- 0.04 M_sun), but much older than our Sun (t=7.12 +/- 0.47 Gyr), while KIC11395018 is significantly more massive than the Sun (M=1.27 +/- 0.04 M_sun) with an age close to that of the Sun (t=4.57 +/- 0.23 Gyr). We confirm that the high lithium abundance reported for these stars should not be considered to represent young ages, as we precisely determined them to be evolved subgiants. We discuss the use of surface lithium abundance, rotation and activity relations as potential age diagnostics.Comment: 12 pages, 3 figures, 5 tables. Accepted by Ap

    Vascular invasion and survival after liver transplantation for hepatocellular carcinoma: a study from the European Liver Transplant Registry

    Get PDF
    Background: Studies suggest that vascular invasion may be a superior prognostic marker compared with traditional selection criteria, e.g. Milan criteria. This study aimed to investigate the prognostic value of micro and macrovascular invasion in a large database material. Methods: Patients liver transplanted for HCC and cirrhosis registered in the European Liver Transplant Registry (ELTR) database were included. The association between the Milan criteria, Up-to-seven criteria and vascular invasion with overall survival and HCC specific survival was investigated with univariate and multivariate Cox regression analyses. Results: Of 23,124 patients transplanted for HCC, 9324 had cirrhosis and data on explant pathology. Patients without microvascular invasion, regardless of number and size of HCC nodules, had a five-year overall survival of 73.2%, which was comparable with patients inside both Milan and Up-to-seven criteria. Patients without macrovascular invasion had an only marginally reduced survival of 70.7% after five years. Patients outside both Milan and Up-to-seven criteria without micro or macrovascular invasion still had a five-year overall survival of 65.8%. Conclusion: Vascular invasion as a prognostic indicator remains superior to criteria based on size and number of nodules. With continuously improving imaging studies, microvascular invasion may be used for selecting patients for transplantation in the future
    corecore