20 research outputs found

    Concept Mapping in Magnetism and Electrostatics: Core Concepts and Development over Time

    Get PDF
    Conceptual change theories assume that knowledge structures grow during the learning process but also get reorganized. Yet, this reorganization process itself is hard to examine. By using concept maps, we examined the changes in students’ knowledge structures and linked it to conceptual change theory. In a longitudinal study, thirty high-achieving students (M = 14.41 years) drew concept maps at three timepoints across a teaching unit on magnetism and electrostatics. In total, 87 concept maps were analyzed using betweenness and PageRank centrality as well as a clustering algorithm. We also compared the students’ concept maps to four expert maps on the topic. Besides a growth of the knowledge network, the results indicated a reorganization, with first a fragmentation during the unit, followed by an integration of knowledge at the end of the unit. Thus, our analysis revealed that the process of conceptual change on this topic was non-linear. Moreover, the terms used in the concept maps varied in their centrality, with more abstract terms being more central and thus more important for the structure of the map. We also suggest ideas for the usage of concept maps in class

    Field-induced effects in the spin liquid candidate PbCuTe2_{2}O6_{6}

    Full text link
    PbCuTe2_2O6_6 is considered as one of the rare candidate materials for a three-dimensional quantum spin liquid (QSL). This assessment was based on the results of various magnetic experiments, performed mainly on polycrystalline material. More recent measurements on single crystals revealed an even more exotic behavior, yielding ferroelectric order below TFE1KT_{\text{FE}}\approx 1\,\text{K}, accompanied by distinct lattice distortions, and a somewhat modified magnetic response which is still consistent with a QSL. Here we report on low-temperature measurements of various thermodynamic, magnetic and dielectric properties of single crystalline PbCuTe2_2O6_6 in magnetic fields B14.5TB\leq 14.5\,\text{T}. The combination of these various probes allows us to construct a detailed BB-TT phase diagram including a ferroelectric phase for BB \leq 8T8\,\text{T} and a BB-induced magnetic phase at BB \geq 11T11\,\text{T}. These phases are preceded by or coincide with a structural transition from a cubic high-temperature phase into a distorted non-cubic low-temperature state. The phase diagram discloses two quantum critical points (QCPs) in the accessible field range, a ferroelectric QCP at Bc1B_{c1} = 7.9T7.9\,\text{T} and a magnetic QCP at Bc2B_{c2} = 11T11\,\text{T}. Field-induced lattice distortions, observed in the state at T>T> 1K1\,\text{K} and which are assigned to the effect of spin-orbit interaction of the Cu2+^{2+}-ions, are considered as the key mechanism by which the magnetic field couples to the dielectric degrees of freedom in this material

    Spin liquid and ferroelectricity close to a quantum critical point in PbCuTe2O6

    Get PDF
    Geometrical frustration among interacting spins combined with strong quantum fluctuations destabilize long-range magnetic order in favour of more exotic states such as spin liquids. By following this guiding principle, a number of spin liquid candidate systems were identified in quasi-two-dimensional (quasi-2D) systems. For 3D, however, the situation is less favourable as quantum fluctuations are reduced and competing states become more relevant. Here we report a comprehensive study of thermodynamic, magnetic and dielectric properties on single crystalline and pressed-powder samples of PbCuTe2_2O6_6, a candidate material for a 3D frustrated quantum spin liquid featuring a hyperkagome lattice. Whereas the low-temperature properties of the powder samples are consistent with the recently proposed quantum spin liquid state, an even more exotic behaviour is revealed for the single crystals. These crystals show ferroelectric order at TFE1KT_{\text{FE}} \approx 1\,\text{K}, accompanied by strong lattice distortions, and a modified magnetic response -- still consistent with a quantum spin liquid -- but with clear indications for quantum critical behaviour.Comment: 59 pages, 15 figures, This version of the article has been accepted for publication, after peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available onlin

    Precision and accuracy of single-molecule FRET measurements - a multi-laboratory benchmark study

    Get PDF
    Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods

    A many-analysts approach to the relation between religiosity and well-being

    Get PDF
    The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N=10,535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported β=0.120). For the second research question, this was the case for 65% of the teams (median reported β=0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates

    A Many-analysts Approach to the Relation Between Religiosity and Well-being

    Get PDF
    The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N = 10, 535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported β = 0.120). For the second research question, this was the case for 65% of the teams (median reported β = 0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates

    Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view

    Get PDF
    Background Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. Results We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 μg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. Conclusions Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.TU Berlin, Open-Access-Mittel - 201

    Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins

    Get PDF
    Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology
    corecore