65 research outputs found

    Effects of interleukin-1β Inhibition on blood pressure, incident hypertension, and residual inflammatory risk

    Get PDF
    While hypertension and inflammation are physiologically inter-related, the effect of therapies that specifically target inflammation on blood pressure is uncertain. The recent CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcomes Study) afforded the opportunity to test whether IL (interleukin)-1β inhibition would reduce blood pressure, prevent incident hypertension, and modify relationships between hypertension and cardiovascular events. CANTOS randomized 10 061 patients with prior myocardial infarction and hsCRP (high sensitivity C-reactive protein) ≥2 mg/L to canakinumab 50 mg, 150 mg, 300 mg, or placebo. A total of 9549 trial participants had blood pressure recordings during follow-up; of these, 80% had a preexisting diagnosis of hypertension. In patients without baseline hypertension, rates of incident hypertension were 23.4, 26.6, and 28.1 per 100-person years for the lowest to highest baseline tertiles of hsCRP (P>0.2). In all participants random allocation to canakinumab did not reduce blood pressure (P>0.2) or incident hypertension during the follow-up period (hazard ratio, 0.96 [0.85–1.08], P>0.2). IL-1β inhibition with canakinumab reduces major adverse cardiovascular event rates. These analyses suggest that the mechanisms underlying this benefit are not related to changes in blood pressure or incident hypertension

    108 AUROTHIOMALATE INHIBITS COX-2 EXPRESSION AND PGE2 PRODUCTION IN CHONDROCYTES BY INCREASING MKP-1 EXPRESSION AND DECREASING p38 AND JNK PHOSPHORYLATION

    Get PDF
    The very high occurrence of cardiovascular events presents a major public health issue, because treatment remains suboptimal. Lowering LDL cholesterol (LDL-C) with statins or ezetimibe in combination with a statin reduces major adverse cardiovascular events. The cardiovascular risk reduction in relation to the absolute LDL-C reduction is linear for most interventions without evidence of attenuation or increase in risk at low LDL-C levels. Opportunities for innovation in dyslipidaemia treatment should address the substantial risk of lipid-associated cardiovascular events among patients optimally treated per guidelines but who cannot achieve LDL-C goals and who could benefit from additional LDL-C-lowering therapy or experience side effects of statins. Fresh approaches are needed to identify promising drug targets early and develop them efficiently. The Cardiovascular Round Table of the European Society of Cardiology (ESC) convened a workshop to discuss new lipid-lowering strategies for cardiovascular risk reduction. Opportunities to improve treatment approaches and the efficient study of new therapies were explored. Circulating biomarkers may not be fully reliable proxy indicators of the relationship between treatment effect and clinical outcome. Mendelian randomization studies may better inform development strategies and refine treatment targets before Phase 3. Trials should match the drug to appropriate lipid and patient profile, and guidelines may move towards a precision-based approach to individual patient management. Stakeholder collaboration is needed to ensure continued innovation and better international coordination of both regulatory aspects and guidelines. It should be noted that risk may also be addressed through increased attention to other risk factors such as smoking, hypertension, overweight, and inactivity

    Antiinflammatory therapy with canakinumab for atherosclerotic disease

    Get PDF
    BACKGROUND: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. METHODS: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P=0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P=0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P=0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P=0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P=0.31). CONCLUSIONS: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    BACKGROUND: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. METHODS: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P=0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P=0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P=0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P=0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P=0.31). CONCLUSIONS: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846 .)

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Pharmacokinetic and Pharmacodynamic Characteristics of Single-Dose Canakinumab in Patients With Type 2 Diabetes Mellitus

    Get PDF
    PURPOSE: Interleukin (IL)-1beta, an inflammatory molecule, contributes to the development of atherothrombosis and worsening of islet beta-cell function. Canakinumab, a human monoclonal antibody, targets IL-1beta-dependent inflammation and reduces the vascular inflammatory biomarker, high-sensitivity C-reactive protein (hsCRP), and other inflammatory cardiovascular biomarkers. Here, we aimed to assess the pharmacokinetic (PK) and pharmacodynamic characteristics, including the effect on hsCRP, of canakinumab in patients with type 2 diabetes mellitus (T2DM) after a 2-hour single-dose intravenous infusion. METHODS: This multicenter, randomized, double-blind, placebo-controlled, dose-escalation study was conducted in patients with T2DM (diagnosed >/=6 months before screening) on a stable daily dose of metformin. Patients were randomly assigned to receive a single intravenous dose of canakinumab 0.03, 0.1, 0.3, 1.5, or 10 mg/kg or placebo. The study was initially designed with 1 small cohort (15 patients, 0.3 mg/kg) on a stable dose of metformin >/=500 mg/d for an initial tolerability evaluation; all other patients were on a stable dose of >/=850 mg/d of metformin. The PK profile was assessed at 0 and 2 hours and at days 2, 14, 28, 56, 84, and 168. Changes in hsCRP and hemoglobin (Hb) A1c levels were assessed at weeks 4, 8, 12, and 24. FINDINGS: Of the 231 enrolled patients, 222 completed the study. Median hsCRP values at screening ranged from 1.8 to 3.2 mg/L, and the median daily dose of metformin ranged from 1000 to 2000 mg. Exposure to canakinumab was dose proportional. The mean half-life ranged from 17 to 26 days, and mean systemic clearance ranged from 0.094 to 0.128 mL/h/kg. Dose-related reductions in hsCRP were significantly greater with canakinumab compared with those with placebo at week 4 (-0.2 mg/L, -0.5 mg/L, -1.5 mg/L, and -1.7 mg/L with the 0.1-, 0.3-, 1.5-, and 10-mg/kg doses, respectively; all, P < 0.05). Significant reductions in hsCRP were maintained up to week 12 with the 2 highest doses of canakinumab (-0.8 mg/L with 1.5 mg/kg and -1.3 mg/L with 10 mg/kg; both, P < 0.05). A placebo-adjusted decrease in HbA1c of 0.31% at week 12 was reported with canakinumab 10 mg/kg (P = 0.038), and a reduction of 0.23% at week 4 was found with canakinumab 1.5 mg/kg (P = 0.011). IMPLICATIONS: The findings from this study suggest that IL-1beta blockade after single-dose administration of canakinumab at 1.5 and 10 mg/kg provided sustained suppression of hsCRP levels for 12 weeks in patients with T2DM. ClinicalTrials.gov identifier: NCT0090014

    Effects of Interleukin-1β Inhibition on Blood Pressure, Incident Hypertension, and Residual Inflammatory Risk: A Secondary Analysis of CANTOS

    No full text
    While hypertension and inflammation are physiologically inter-related, the effect of therapies that specifically target inflammation on blood pressure is uncertain. The recent CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcomes Study) afforded the opportunity to test whether IL (interleukin)-1β inhibition would reduce blood pressure, prevent incident hypertension, and modify relationships between hypertension and cardiovascular events. CANTOS randomized 10 061 patients with prior myocardial infarction and hsCRP (high sensitivity C-reactive protein) ≥2 mg/L to canakinumab 50 mg, 150 mg, 300 mg, or placebo. A total of 9549 trial participants had blood pressure recordings during follow-up; of these, 80% had a preexisting diagnosis of hypertension. In patients without baseline hypertension, rates of incident hypertension were 23.4, 26.6, and 28.1 per 100-person years for the lowest to highest baseline tertiles of hsCRP (P>0.2). In all participants random allocation to canakinumab did not reduce blood pressure (P>0.2) or incident hypertension during the follow-up period (hazard ratio, 0.96 [0.85-1.08], P>0.2). IL-1β inhibition with canakinumab reduces major adverse cardiovascular event rates. These analyses suggest that the mechanisms underlying this benefit are not related to changes in blood pressure or incident hypertension. Clinical Trial Registration- URL: https://clinicaltrials.gov. Unique identifier: NCT01327846
    • …
    corecore