845 research outputs found
Impact of Social Capital on Employment and Marriage among Low Income Single Mothers
The 1996 Personal Responsibility and Work Opportunity Reconciliation Act of 1996 (PRWORA, P. L. 104-93) called primarily on women to achieve two goals: work and/or marriage. For low income single mothers with limited access to capital, the PRWORA presents a quagmire in that the public safety nets previously guaranteed by the policies of the New Deal were abruptly supplanted by policies with obligations that require various forms of capital. Using longitudinal data from the Fragile Families and Child Wellbeing dataset, we examine the impact of social capital on the chances of marriage and employment among single, unemployed mothers. We find that social capital increases a woman\u27s chances of both marriage and stable employment, but the social capital must be expansive in order to challenge significant social disadvantage. We conclude with a discussion of the importance of social capital as a precursor to upward social mobility for low income mothers as opposed to simply getting \u27off of welfare.\u2
Multiresistant Salmonella enterica serovar 4,[5],12:i:- in Europe: a new pandemic strain?
A marked increase in the prevalence of S. enterica serovar 4,[5],12:i:- with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines (R-type ASSuT) has been noted in food-borne infections and in pigs/pig meat in several European countries in the last ten years. One hundred and sixteen strains of S. enterica serovar 4,[5],12:i:- from humans, pigs and pig meat isolated in England and Wales, France, Germany, Italy, Poland, Spain and the Netherlands were further subtyped by phage typing, pulsed-field gel electrophoresis and multilocus variable number tandem repeat analysis to investigate the genetic relationship among strains. PCR was performed to identify the fljB flagellar gene and the genes encoding resistance to ampicillin, streptomycin, sulphonamides and tetracyclines. Class 1 and 2 integrase genes were also sought. Results indicate that genetically related serovar 4,[5],12:i:- strains of definitive phage types DT193 and DT120 with ampicillin, streptomycin, sulphonamide and tetracycline resistance encoded by blaTEM, strA-strB, sul2 and tet(B) have emerged in several European countries, with pigs the likely reservoir of infection. Control measures are urgently needed to reduce spread of infection to humans via the food chain and thereby prevent the possible pandemic spread of serovar 4,[5],12:i:- of R-type ASSuT as occurred with S. Typhimurium DT104 during the 1990s
Self-consistent nanoflare heating in model active regions:MHD avalanches
Straightened cylindrical models of coronal loops have been standard for decades, and shown to support nanoflare-like heating, but the influence of geometric curvature in models upon the heating produced has not been discussed in depth. Heating, its spatiotemporal distributions, and the associated mechanisms responsible are discussed, and compared with those from straightened models of a coronal loop. Previously, magnetohydrodynamic avalanches have been generalized to curved loops, and shown to be viable. From that study, the associated heating is analysed and discussed in depth. Heating is seen to arise from processes originally instigated, yet not dominated, by magnetic reconnection, producing bursty, aperiodic nanoflares, dispersed evenly throughout the corona, but with a modest bias away from footpoints. One novelty arising is the simultaneous yet independent occurrence of nanoflare-like events at disjoint sites along individual strands, anticipating some features recently seen in ‘campfires’ by Solar Orbiter. With a view to future refinements in the model and to the inclusion of additional physical effects, the implications of this analysis are discussed
Can multi-threaded flux tubes in coronal arcades support a magnetohydrodynamic avalanche?
Magnetohydrodynamic (MHD) instabilities allow energy to be released from stressed magnetic fields, commonly modelled in cylindrical flux tubes linking parallel planes, but, more recently, also in curved arcades containing flux tubes with both footpoints in the same photospheric plane. Uncurved cylindrical flux tubes containing multiple individual threads have been shown to be capable of sustaining an MHD avalanche, whereby a single unstable thread can destabilise many. We examine the properties of multi-threaded coronal loops, wherein each thread is created by photospheric driving in a realistic, curved coronal arcade structure (with both footpoints of each thread in the same plane). We use three-dimensional MHD simulations to study the evolution of singleand multi-threaded coronal loops, which become unstable and reconnect, while varying the driving velocity of individual threads. Experiments containing a single thread destabilise in a manner indicative of an ideal MHD instability and consistent with previous examples in the literature. The introduction of additional threads modifies this picture, with aspects of the model geometry and relative driving speeds of individual threads affecting the ability of any thread to destabilise others. In both single- and multi-threaded cases, continuous driving of the remnants of disrupted threads produces secondary, aperiodic bursts of energetic release
Flare particle acceleration in the interaction of twisted coronal flux ropes
The authors gratefully acknowledge the support of the U.K. Science and Technology Facilities Council. JT and AWH acknowledge the financial support of STFC through the Consolidated grant, ST/N000609/1, to the University of St Andrews. PKB acknowledges STFC support through ST/P000428/1 at the University of Manchester.Aims. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops. Methods. We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread. Results. The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.PostprintPeer reviewe
Hermeneutics and education with special reference to the work of Ebeling and Ricoeur and the implications for religious education
Language and interpretation are fundamental and wide ranging issues in both hermeneutics and education. This thesis is an attempt to explore 1. The dimensions of hermeneutics through selected aspects of the German theologian Gerhard Ebeling and the French philospher Paul Ricoeur and 2. an attempt to appropriate appropriately these hermeneutical perspectives in the sphere of education in general and Religious Education in particular
A Probabilistic Public Key Encryption Scheme Based on Quartic Reciprocity (Draft V1.22)
Using a novel class of single bit one-way trapdoor functions we construct a theoretical probabilistic public key encryption scheme that has many interesting properties. These functions are constructed from binary quadratic forms and rational quartic reciprocity laws. They are not based on class group operations nor on universal one-way hash functions. Inverting these functions appears to be as difficult as factoring, and other than factoring, we know of no reductions between this new number theory problem and the standard number theoretic problems used cryptographically.
We are unable to find away to construct a ciphertext without knowing the plaintext, hence this encryption scheme appears to be plaintext aware (). By using quartic reciprocity properties there is less information leakage than with quadratic reciprocity based schemes and consequently this encryption scheme appears to be completely non-malleable as defined by M. Fischlin (2005), and strongly plaintext aware () and secret-key aware () as well, as defined by M. Barbosa and P. Farshim (2009). Assuming plaintext awareness (), the difficulty of inverting our one-way trapdoor function and the hardness of certain standard number theoretic problems, then this scheme is provably secure against adaptive chosen ciphertext attacks ().
The public key is a product of two secret primes. Decryption is fast, requiring just one modular multiplication and one Jacobi symbol evaluation. The encryption step is polynomial time, but slow, and there is a great deal of message expansion. However, the encryption step is amenable to parallelization, both across bits, as well as at the level of encrypting a single bit. The encryption step is also amenable to asynchronous pre-computation. After the pre-computation step, for a bit public key, encryption only requires three multiplications (with bit length numbers) per encrypted bit, where is an adjustable security parameter. The computational cost to break an encrypted bit can be optionally adjusted down on a per bit basis.
With no additional keys, multiple senders can individually join secret information to each encrypted bit without changing the parity of the encrypted bit. (Recovering this secret information is harder than recovering the private key.) Each sender can separately and publicly reveal their secret information without revealing the plaintext bit. The senders of the encrypted message bit can also individually authenticate they are senders without the use of a message authentication code and without revealing the plaintext bit.
We are not aware of any hardware faults or other adverse events that might occur during decryption that could be exploited to break the secret key. Encryption faults can occur that could be exploited to reveal plaintext bits, however, these faults can be detected with high probability and with low computational cost
Particle dynamics in a non-flaring solar active region model
The aim of this work is to investigate and characterise particle behaviour in a (observationally-driven) 3D MHD model of the solar atmosphere above a slowly evolving, non-flaring active region. We use a relativistic guiding-centre particle code to investigate particle acceleration in a single snapshot of the 3D MHD simulation. Despite the lack of flare-like behaviour in the active region, direct acceleration of electrons and protons to non-thermal energies (≲ 42 MeV) was found, yielding spectra with high-energy tails which conform to a power law. Examples of particle dynamics, including particle trapping caused by local electric rather than magnetic field effects, are observed and discussed, together with implications for future experiments which simulate non-flaring active region heating and reconnection.Publisher PDFPeer reviewe
Genetic relationships among strains of Salmonella enteritidis in a national epidemic in Switzerland
A collection of Salmonella enteritidis strains isolated in Switzerland (1965-90) was characterized. The phage type and plasmid profile of isolates were compared with the copy number and insertion loci of the DNA insertion element IS200. Three clonal lines of S. enteritidis were identified by IS200 profile; the various phage types were subtypes reproducibly associated with one of these lines. All human and poultry isolates contained a 38 Mda plasmid which hybridized with a mouse virulence-associated gene probe. In S. enteritidis, the IS200 profile is a race-specific molecular marker of the chromosome, and may be particularly applicable for studying the epidemiology of less common serovar
Butterfly richness and abundance along a gradient of imperviousness and the importance of matrix quality
Heterogeneity in quantity and quality of resources provided in the urban matrix may mitigate adverse effects of urbanization intensity on the structure of biotic communities. To assess this we quantified the spatial variation in butterfly richness and abundance along an impervious surface gradient using three measures of urban matrix quality: floral resource availability and origin (native vs exotic plants), tree cover, and the occurrence of remnant habitat patches. Butterfly richness and abundance were surveyed in 100 cells (500 x 500‐m), selected using a random‐stratified sampling design, across a continuous gradient of imperviousness in Melbourne, Australia. Sampling occurred twice during the butterfly flight season. Occurrence data were analyzed using generalized linear models at local and meso‐ scales. Despite high sampling completeness we did not detect 75% of species from the regional species pool in the urban area, suggesting that urbanization has caused a large proportion of the region’s butterflies to become absent or extremely rare within Melbourne’s metro‐area. Those species that do remain are largely very generalist in their choice of larval host plants. Butterfly species richness and abundance declined with increasing impervious surface cover and, contrary to evidence for other taxa, there was no evidence that richness peaked at intermediate levels of urbanization. Declines in abundance appeared to be more noticeable when impervious surface cover exceeded 25%, while richness declined linearly with increasing impervious surface cover. We find evidence that the quality of the urban matrix (floral resources and remnant vegetation) influenced butterfly richness and abundance although the effects were small. Total butterfly abundance responded negatively to exotic floral abundance early in the sampling season and positively to total floral abundance later in the sampling season. Butterfly species richness increased with tree cover. Negative impacts of increased urbanization intensity on butterfly species richness and abundance may be mitigated to some extent by improving the quality of the urban matrix by enhancing tree cover and the provision of floral resources – with some evidence that native plants are more effective
- …