776 research outputs found

    Investigation and quality assessment of the Past Weather Code from the Integrated Surface Database

    Get PDF
    Quantitative SYNOP Code weather variables such as rainfall amount, although of high societal and environmental importance, are frequently subject to recording errors and inhomogeneities resulting in uncertain conclusions. Here we assess the viability of the more qualitative Past Weather Code (PWC) for its use in robust climate analysis in the belief that it is less prone to both random and systematic errors. The Past Weather Code data, from a selection of the National Oceanographic and Atmospheric Administration’s Integrated Surface Database (ISD) (4731 sufficiently long stations), is quality assessed by searching for inhomogeneities in station PWC time series, removing the offending stations and averaging the remaining stations into a global gridded dataset. PWCs 6 (Rainfall), 7 (Snowfall) and 9 (Thunderstorms) are found to robustly exhibit seasonal features, e.g. the Indian monsoon and peak Northern Hemispheric winter snowfall. Precipitation responses to the North Atlantic Oscillation are also detected in winter PWC 6 data over Europe

    Gill transcriptome response to changes in environmental calcium in the green spotted puffer fish

    Get PDF
    Abstract Background Calcium ion is tightly regulated in body fluids and for euryhaline fish, which are exposed to rapid changes in environmental [Ca2+], homeostasis is especially challenging. The gill is the main organ of active calcium uptake and therefore plays a crucial role in the maintenance of calcium ion homeostasis. To study the molecular basis of the short-term responses to changing calcium availability, the whole gill transcriptome obtained by Super Serial Analysis of Gene Expression (SuperSAGE) of the euryhaline teleost green spotted puffer fish, Tetraodon nigroviridis, exposed to water with altered [Ca2+] was analysed. Results Transfer of T. nigroviridis from 10 ppt water salinity containing 2.9 mM Ca2+ to high (10 mM Ca2+ ) and low (0.01 mM Ca2+) calcium water of similar salinity for 2-12 h resulted in 1,339 differentially expressed SuperSAGE tags (26-bp transcript identifiers) in gills. Of these 869 tags (65%) were mapped to T. nigroviridis cDNAs or genomic DNA and 497 (57%) were assigned to known proteins. Thirteen percent of the genes matched multiple tags indicating alternative RNA transcripts. The main enriched gene ontology groups belong to Ca2+ signaling/homeostasis but also muscle contraction, cytoskeleton, energy production/homeostasis and tissue remodeling. K-means clustering identified co-expressed transcripts with distinct patterns in response to water [Ca2+] and exposure time. Conclusions The generated transcript expression patterns provide a framework of novel water calcium-responsive genes in the gill during the initial response after transfer to different [Ca2+]. This molecular response entails initial perception of alterations, activation of signaling networks and effectors and suggests active remodeling of cytoskeletal proteins during the initial acclimation process. Genes related to energy production and energy homeostasis are also up-regulated, probably reflecting the increased energetic needs of the acclimation response. This study is the first genome-wide transcriptome analysis of fish gills and is an important resource for future research on the short-term mechanisms involved in the gill acclimation responses to environmental Ca2+ changes and osmoregulation.Peer Reviewe

    Global simulation of EMIC wave excitation during the 21 April 2001 storm from coupled RCM-RAM-HOTRAY modeling

    Get PDF
    The global distribution and spectral properties of electromagnetic ion cyclotron (EMIC) waves in the He+ band are simulated for the 21 April 2001 storm using a combination of three different codes: the Rice Convection Model, the Ring current-Atmospheric interactions Model, and the HOTRAY ray tracing code (incorporated with growth rate solver). During the storm main phase, injected ions exhibit a non-Maxwellian distribution with pronounced phase space density minima at energies around a few keV. Ring current H+-injected from the plasma sheet provides the source of free energy for EMIC excitation during the storm. Significant wave gain is confined to a limited spatial region inside the storm time plume and maximizes at the eastward edge of the plume in the dusk and premidnight sector. The excited waves are also able to resonate and scatter relativistic electrons, but the minimum electron resonant energy is generally above 3 MeV

    Shell sources as a probe of relativistic effects in neutron star models

    Get PDF
    A perturbing shell is introduced as a device for studying the excitation of fluid motions in relativistic stellar models. We show that this approach allows a reasonably clean separation of radiation from the shell and from fluid motions in the star, and provides broad flexibility in the location and timescale of perturbations driving the fluid motions. With this model we compare the relativistic and Newtonian results for the generation of even parity gravitational waves from constant density models. Our results suggest that relativistic effects will not be important in computations of the gravitational emission except possibly in the case of excitation of the neutron star on very short time scales.Comment: 16 pages LaTeX with 6 eps figures; submitted to Phys. Rev.

    Oxygen ion dynamics in the Earth's ring current: Van Allen probes observations

    Full text link
    Oxygen (O+) enhancements in the inner magnetosphere are often observed during geomagnetically active times, such as geomagnetic storms. In this study, we quantitatively examine the difference in ring current dynamics with and without a substantial O+ ion population based on almost 6 years of Van Allen Probes observations. Our results have not only confirmed previous finding of the role of O+ ions to the ring current but also found that abundant O+ ions are always present during large storms when sym-H < -60 nT without exception, whilst having the pressure ratio () between O+ and proton (H+) larger than 0.8 and occasionally even larger than 1 when L < 3. Simultaneously, the pressure anisotropy decreases with decreasing sym-H and increasing L shell. The pressure anisotropy decrease during the storm main phase is likely related to the pitch angle isotropization processes. In addition, we find that increases during the storm main phase and then decreases during the storm recovery phase, suggesting faster buildup and decay of O+ pressure compared to H+ ions, which are probably associated with some species dependent source and/or energization as well as loss processes in the inner magnetosphere.Accepted manuscrip

    A new diffusion matrix for whistler mode chorus waves

    Get PDF
    Global models of the Van Allen radiation belts usually include resonant wave-particle interactions as a diffusion process, but there is a large uncertainty over the diffusion rates. Here we present a new diffusion matrix for whistler mode chorus waves that can be used in such models. Data from seven satellites are used to construct 3,536 power spectra for upper and lower band chorus for 1.5 ≤ L∗ ≤ 10, MLT, magnetic latitude 0o ≤ |λm| ≤ 60o and five levels of Kp. Five density models are also constructed from the data. Gaussian functions are fitted to the spectra and capture typically 90% of the wave power. The frequency maxima of the power spectra vary with L∗ and are typically lower than that used previously. Lower band chorus diffusion increases with geomagnetic activity and is largest between 21:00 and 09:00 MLT. Energy diffusion extends to a few MeV at large pitch angles > 60o and at high energies exceeds pitch angle diffusion at the loss cone. Most electron diffusion occurs close to the geomagnetic equator (< 12o). Pitch angle diffusion rates for lower band chorus increase with L∗ and are significant at L∗ = 8 even for low levels of geomagnetic activitywhile upper band chorus is restricted to mainly L∗ < 6. The combined drift and bounce averaged diffusion rates for upper and lower band chorus extend from a few keV near the loss cone up to several MeV at large pitch angles indicating loss at low energies and net acceleration at high energies

    Adult acclimation to combined temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposures

    Get PDF
    1.This study examined the effects of long-term culture under altered conditions on the Antarctic sea urchin, Sterechinus neumayeri. 2.Sterechinus neumayeri was cultured under the combined environmental stressors of lowered pH (−0·3 and −0·5 pH units) and increased temperature (+2 °C) for 2 years. This time-scale covered two full reproductive cycles in this species and analyses included studies on both adult metabolism and larval development. 3.Adults took at least 6–8 months to acclimate to the altered conditions, but beyond this, there was no detectable effect of temperature or pH. 4.Animals were spawned after 6 and 17 months exposure to altered conditions, with markedly different outcomes. At 6 months, the percentage hatching and larval survival rates were greatest in the animals kept at 0 °C under current pH conditions, whilst those under lowered pH and +2 °C performed significantly less well. After 17 months, performance was not significantly different across treatments, including controls. However, under the altered conditions urchins produced larger eggs compared with control animals. 5.These data show that under long-term culture adult S. neumayeri appear to acclimate their metabolic and reproductive physiology to the combined stressors of altered pH and increased temperature, with relatively little measureable effect. They also emphasize the importance of long-term studies in evaluating effects of altered pH, particularly in slow developing marine species with long gonad maturation times, as the effects of altered conditions cannot be accurately evaluated unless gonads have fully matured under the new conditions
    corecore