20 research outputs found

    Decadal increase in vessel interactions by a scavenging pelagic seabird across the North Atlantic

    Get PDF
    J.H.D.’s position is funded by an Irish Research Council Enterprise Partnership Scheme (EPSPG/2019/469), M.C. is funded by the H2020 X-Rotor project (101007135), and the majority of GLS devices are funded by the SEATRACK program (seatrack.seapop.no, Norwegian Research Council grant no. 192141). We would like to recognize and thank all those who assisted in the deployment and recovery of GLS devices, too many to mention individually. We are indebted to Pat and Liezl Grattan-Bellew for accommodating fieldwork on Little Saltee, Orkney Islands Council for access to Eynhallow, the landowners at Laxamyri for access to the Skjalfandi colony, and the Norwegian Armed Forces for support and accommodation on Jan Mayen. Particular thanks to Françoise Amélineau and Ewan Edwards for helpful input during discussions on this topic at an early stage, and to Vegard Bråthen for collating, curating, and delivering the data for analysis. Thanks to the two anonymous reviewers for exceptionally helpful and constructive feedback.Peer reviewedPublisher PD

    Light-level geolocators reveal spatial variations in interactions between northern fulmars and fisheries

    Get PDF
    Seabird−fishery interactions are a common phenomenon of conservation concern. Here, we highlight how light-level geolocators provide promising opportunities to study these interactions. By examining raw light data, it is possible to detect encounters with artificial lights atnight, while conductivity data give insight on seabird behaviour during encounters. We used geolocator data from 336 northern fulmars Fulmarus glacialis tracked from 12 colonies in the North-East Atlantic and Barents Sea during the non-breeding season to (1) confirm that detections of artificial lights correspond to encounters with fishing vessels by comparing overlap between fishing effort and both the position of detections and the activity of birds during encounters, (2) assess spatial differences in the number of encounters among wintering areas and (3) test whethersome individuals forage around fishing vessels more often than others. Most (88.1%) of the track encountered artificial light at least once, with 9.5 ± 0.4 (SE) detections on average per 6 mo nonbreeding season. Encounters occurred more frequently where fishing effort was high, and birds from some colonies had higher probabilities of encountering lights at night. During encounters, fulmars spent more time foraging and less time resting, strongly suggesting that artificial lights reflect the activity of birds around fishing vessels. Inter-individual variability in the probability of encountering light was high (range: 0−68 encounters per 6 mo non-breeding season), meaning that some individuals were more often associated with fishing vessels than others, independently of their colony of origin. Our study highlights the potential of geolocators to study seabird−fisheryinteractions at a large scale and a low cost.publishedVersio

    Cold comfort: Arctic seabirds find refugia from climate change and potential competition in marginal ice zones and fjords

    Get PDF
    Climate change alters species distributions by shifting their fundamental niche in space through time. Such effects may be exacerbated by increased inter-specific competition if climate alters species dominance where competitor ranges overlap. This study used census data, telemetry and stable isotopes to examine the population and foraging ecology of a pair of Arctic and temperate congeners across an extensive zone of sympatry in Iceland, where sea temperatures varied substantially. The abundance of Arctic Brünnich’s guillemot Uria lomvia declined with sea temperature. Accessibility of refugia in cold water currents or fjords helped support higher numbers and reduce rates of population decline. Competition with temperate Common guillemots Uria aalge did not affect abundance, but similarities in foraging ecology were sufficient to cause competition when resources are limiting. Continued warming is likely to lead to further declines of Brünnich’s guillemot, with implications for conservation status and ecosystem services

    Seabirds reveal mercury distribution across the North Atlantic

    Get PDF
    Author contributionsC.A. and J.F. designed research; C.A., B. Moe, A.T., S.D., V.S.B., B. Merkel, J.Å., and J.F. performed research; C.A., B. Moe, M.B.-F., A.T., S.D., V.S.B., B. Merkel, J.Å., J.L., C.P.-P., and J.F. analyzed data; C.A., B.M., V.S.B., and J.F. sample and data collection, data coordination and management, statistical methodology; H.S. sample and data contribution and Data coordination and management; D.G., M.B.-F., F. Amélineau, F. Angelier, T.A.-N., O.C., S.C.-D., J.D., K.E., K.E.E., A.E., G.W.G., M.G., S.A.H., H.H.H., M.K.J., Y. Kolbeinsson, Y. Krasnov, M.L., J.L., S.-H.L., B.O., A.P., C.P.-P., T.K.R., G.H.S., P.M.T., T.L.T., and P.B. sample and data contribution; A.T., P.F. and S.D. sample and data contribution and statistical methodology; J.Å. statistical methodology; J.F. supervision; and C.A., B. Moe, H.S., D.G., A.T., S.D., V.S.B., B. Merkel, J.Å., F. Amélineau, F. Angelier, T.A.-N., O.C., S.C.-D., J.D., K.E., K.E.E., A.E., P.F., G.W.G., M.G., S.A.H., H.H.H., Y. Kolbeinsson, Y. Krasnov, S.-H.L., B.O., A.P., T.K.R., G.H.S., P.M.T., T.L.L., P.B., and J.F. wrote the paper.Peer reviewe

    Non-breeding areas of three sympatric auk species breeding in three Icelandic colonies

    No full text
    Like many seabirds, auks spend most of the year in offshore areas. Information on which oceanic areas they rely on throughout the winter is therefore important in understanding their population dynamics and establishing appropriate conservation measures. The breeding populations of Thick-billed Murres (Uria lomvia), Common Murres (Uria aalge) and Razorbills (Alca torda) in Iceland have been reported declining for the last 30 years. Thick-billed Murres have shown the most alarming rate of decrease, while Razorbills have declined the least. To help understand these changes, we collected information about the non-breeding distribution of these three species by using light-based geolocation. Geolocators were deployed on breeding adults in three different colonies in Iceland in 2013 and 2014. Data showed that the three species’ wintering areas differed substantially. Thick-billed Murres wintered off the west coast of Greenland and East Greenland/Northern Iceland, Common Murres favoured areas around Iceland/East Greenland and to the southwest along the Mid-Atlantic Ridge, and Razorbills were mostly distributed around Iceland. Although some intraspecific variation was evident, we conclude that the population development of Thick-billed Murres in Iceland is likely to be largely influenced by environmental conditions in west Greenland, while Common Murres and Razorbills are more dependent on the oceanic area around Iceland. The results may therefore prove to be an important platform for understanding the population dynamics of these three species in Iceland and informing conservation actions

    Strong migratory connectivity across meta-populations of sympatric North Atlantic seabirds

    No full text
    Identifying drivers of population trends in migratory species is difficult, as they can face many stressors while moving through different areas and environments during the annual cycle. To understand the potential of migrants to adjust to perturbations, it is critical to study the connection of different areas used by different populations during the annual cycle (i.e. migratory connectivity). Using a large-scale tracking data set of 662 individual seabirds from 2 sympatric auk meta-populations (common guillemots Uria aalge and Brünnich’s guillemots U. lomvia) breeding in 12 colonies throughout the Northeast Atlantic, we estimated migratory connectivity in seasonal space use as well as occupied environmental niches. We found strong migratory connectivity, within and between species. This was apparent through a combination of seasonal space use and occupied environmental niches. Brünnich’s guillemot populations grouped into 2 and common guillemot populations into 5 previously undescribed spatiotemporal clusters. Common guillemot populations clustered in accordance with the variable population trends exhibited by the species, while Brünnich’s guillemot populations are declining everywhere where known within the study area. Individuals from different breeding populations in both species were clustered in their space and environmental use, utilising only a fraction of the potential species-wide range. Further, space use varied among seasons, emphasising the variable constraints faced by both species during the different stages of their annual cycle. Our study highlights that considering spatiotemporal dynamics, not only in space but also in occupied environmental niches, improves our understanding of migratory connectivity and thus population vulnerability in the context of global change. Environmental niche · Inter-population mixing · Large-scale spatiotemporal dynamics · Light-level geolocation · Murres · Population spread · Seasonalit

    Strong migratory connectivity across meta-populations of sympatric North Atlantic seabirds

    Get PDF
    Identifying drivers of population trends in migratory species is difficult, as they can face many stressors while moving through different areas and environments during the annual cycle. To understand the potential of migrants to adjust to perturbations, it is critical to study the connection of different areas used by different populations during the annual cycle (i.e. migratory connectivity). Using a large-scale tracking data set of 662 individual seabirds from 2 sympatric auk meta-populations (common guillemots Uria aalge and Brünnich’s guillemots U. lomvia) breeding in 12 colonies throughout the Northeast Atlantic, we estimated migratory connectivity in seasonal space use as well as occupied environmental niches. We found strong migratory connectivity, within and between species. This was apparent through a combination of seasonal space use and occupied environmental niches. Brünnich’s guillemot populations grouped into 2 and common guillemot populations into 5 previously undescribed spatiotemporal clusters. Common guillemot populations clustered in accordance with the variable population trends exhibited by the species, while Brünnich’s guillemot populations are declining everywhere where known within the study area. Individuals from different breeding populations in both species were clustered in their space and environmental use, utilising only a fraction of the potential species-wide range. Further, space use varied among seasons, emphasising the variable constraints faced by both species during the different stages of their annual cycle. Our study highlights that considering spatiotemporal dynamics, not only in space but also in occupied environmental niches, improves our understanding of migratory connectivity and thus population vulnerability in the context of global change. Environmental niche · Inter-population mixing · Large-scale spatiotemporal dynamics · Light-level geolocation · Murres · Population spread · Seasonalit

    Seasonal variation of mercury contamination in Arctic seabirds: a pan- arctic assessment

    No full text
    International audienceMercury (Hg) is a natural trace element found in high concentrations in top predators, including Arctic seabirds. Most current knowledge about Hg concentrations in Arctic seabirds relates to exposure during the summer breeding period when researchers can easily access seabirds at colonies. However, the few studies focused on winter have shown higher Hg concentrations during the non-breeding period than breeding period in several tissues. Hence, improving knowledge about Hg exposure during the non-breeding period is crucial to understanding the threats and risks encountered by these species year-round. We used feathers of nine migratory alcid species occurring at high latitudes to study bird Hg exposure during both the breeding and non-breeding periods. Overall, Hg concentrations during the non-breeding period were ~3 times higher than during the breeding period. In addition, spatial differences were apparent within and between the Atlantic and Pacific regions. While Hg concentrations during the non-breeding period were ~9 times and ~3 times higher than during the breeding period for the West and East Atlantic respectively, Hg concentrations in the Pacific during the non-breeding period were only ~1.7 times higher than during the breeding period. In addition, individual Hg concentrations during the non-breeding period for most of the seabird colonies were above 5.00 µg g-1 dry weight (dw), which is considered to be the threshold at which deleterious effects are observed, suggesting that some breeding populations might be vulnerable to non-breeding Hg exposure. Since wintering area locations, and migration routes may influence seasonal Hg concentrations, it is crucial to improve our knowledge about spatial ecotoxicology to fully understand the risks associated with Hg contamination in Arctic seabirds
    corecore