1,366 research outputs found

    Marine benthic flora and fauna of Gourdon Bay and the Dampier Peninsula in the Kimberley region of North-Western Australia

    Get PDF
    Surveys undertaken to characterise the marine benthic habitats along the Dampier Peninsula and further south at Gourdon Bay in the Kimberley region of Western Australia were augmented with epibenthic sled sampling of soft and hard bottom habitats. This paper describes the species collected, their biomass and relative abundance for the main groups of marine macrophytes and invertebrates. Five localities were surveyed; Gourdon Bay, Quondong Point to Coulomb Point, Carnot Bay to Beagle Bay, Perpendicular Head and Packer Island. Sampling was limited to fifteen epibenthic dredge operations from a range of habitat types and was designed to target the most common habitat types and to obtain species identifications of the most important species and those which typified different habitat types. Surveys covered a total of 1,350 m 2 of seabed in depths between 11 and 23m. We identified 415 taxa comprising: 1 seagrass, 43 algae, 52 sponges, 30 ascidians, 10 hydroids, 14 scleractinian corals, 52 other cnidarians, 69 crustaceans, 73 molluscs and 71 echinoderms. Despite the limited nature of the sampling, a significant number of new species, range extensions and new records for Western Australia and Australia were recorded. Within the algae, one range extension (Halimeda cf. cuneata f. digitata not previously recorded in Western Australia) and one possible new species of Areschougia were recorded. Two range extensions were present in the ascidians; the solitary ascidian Polycarpa cf. intonata has previously only been recorded in Queensland and Cnemidocarpa cf. radicosa only in temperate Australian waters. There were several range extensions for the crustacea, for example, the sponge crab, Tumidodromia dormia, has only been recorded in Queensland. One species of holothurian of the genus Phyllophorus could not be identified from the literature available and may represent a new species. Similarly, a small species of the echinoid Gymnechinus could possibly be a new species. The collections of hydroids, hard corals, crinoids and molluscs contained no new species or range extensions. There was difficulty in identification of some groups to species level due to the status of the current taxonomic literature (e.g. Cnidaria, Porifera and ascidians) and there may be a number of new species among the material collected. Among the anthozoa, there is at least one new species of Chromonephthea and potentially 10 range extensions to Western Australia. Sinularia cf. acuta and Chromonephthea curvata are both new records for Australia with both previously recorded in Indonesia only. Among the better known taxa (e.g. molluscs, echinoderms, corals), most of the taxa identified to species level have been recorded to occur throughout north-western Australia, however the diversity recorded in this study is less than other parts of the Kimberley and this is almost certainly a result of the small overall area sampled and the single method of collection utilised. The most important species on soft bottom habitats in terms of biomass was the heart urchin Breynia desorii (up to 326 g.m -2). Sponges were the dominant fauna by biomass (up to 620 g.m -2) on hard bottom habitats and biomass was dominated a by a few large cup and massive sponge species (e.g. Pione velans and two unidentified Spheciospongia). The biomass of other filter feeders, especially ascidians (e.g. Aplidium cf. crateriferum), soft corals (e.g. Chromonephthea spp.), gorgonians (e.g. Junceella fragilis and Dichotella gemmacea) was also high, indicating the importance of these groups in characterising hard bottom habitats. Although low in biomass, crinoids such as Comaster multifidus and Comatula pectinata were abundant in samples that included a high biomass of other filter feeders

    Membrane Systems and Hypercomputation

    Get PDF
    We present a brief analysis of hypercomputation and its relationship to membrane systems theory, including a re-evaluation of Turing’s analysis of computation and the importance of timing structure, and suggest a ‘cosmological’ variant of tissue P systems that is capable of super-Turing behaviour. No prior technical background in hypercomputation theory is assumed

    Early Atomic Models - From Mechanical to Quantum (1904-1913)

    Get PDF
    A complete history of early atomic models would fill volumes, but a reasonably coherent tale of the path from mechanical atoms to the quantum can be told by focusing on the relevant work of three great contributors to atomic physics, in the critically important years between 1904 and 1913: J. J. Thomson, Ernest Rutherford and Niels Bohr. We first examine the origins of Thomson's mechanical atomic models, from his ethereal vortex atoms in the early 1880's, to the myriad "corpuscular" atoms he proposed following the discovery of the electron in 1897. Beyond predictions for the periodicity of the elements, the application of Thomson's atoms to problems in scattering and absorption led to quantitative predictions that were confirmed by experiments with high-velocity electrons traversing thin sheets of metal. Still, the much more massive and energetic {\alpha}-particles being studied by Rutherford were better suited for exploring the interior of the atom, and careful measurements on the angular dependence of their scattering eventually allowed him to infer the existence of an atomic nucleus. Niels Bohr was particularly troubled by the radiative instability inherent to any mechanical atom, and succeeded in 1913 where others had failed in the prediction of emission spectra, by making two bold hypotheses that were in contradiction to the laws of classical physics, but necessary in order to account for experimental facts.Comment: 58 Pages + References, 8 Figures. Accepted for publication in the European Physical Journal H (Historical Perspectives on Contemporary Physics). V2 - minor typos corrected and a footnote added to p.2

    Electromagnetic field angular momentum in condensed matter systems

    Full text link
    Various electromagnetic systems can carry an angular momentum in their {\bf E} and {\bf B} fields. The electromagnetic field angular momentum (EMAM) of these systems can combine with the spin angular momentum to give composite fermions or composite bosons. In this paper we examine the possiblity that an EMAM could provide an explanation of the fractional quantum Hall effect (FQHE) which is complimentary to the Chern-Simons explanation. We also examine a toy model of a non-BCS superconductor (e.g. high TcT_c superconductors) in terms of an EMAM. The models presented give a common, simple picture of these two systems in terms of an EMAM. The presence of an EMAM in these systems might be tested through the observation of the decay modes of a charged, spin zero unstable particle inside one of these systems.Comment: 17 pages, no figures, to be published in Phys. Rev.

    Data‐driven integration of hippocampal CA1 synaptic physiology in silico

    Get PDF
    The anatomy and physiology of monosynaptic connections in rodent hippocampal CA1 have been extensively studied in recent decades. Yet, the resulting knowledge remains disparate and difficult to reconcile. Here, we present a data‐driven approach to integrate the current state‐of‐the‐art knowledge on the synaptic anatomy and physiology of rodent hippocampal CA1, including axo‐dendritic innervation patterns, number of synapses per connection, quantal conductances, neurotransmitter release probability, and short‐term plasticity into a single coherent resource. First, we undertook an extensive literature review of paired recordings of hippocampal neurons and compiled experimental data on their synaptic anatomy and physiology. The data collected in this manner is sparse and inhomogeneous due to the diversity of experimental techniques used by different groups, which necessitates the need for an integrative framework to unify these data. To this end, we extended a previously developed workflow for the neocortex to constrain a unifying in silico reconstruction of the synaptic physiology of CA1 connections. Our work identifies gaps in the existing knowledge and provides a complementary resource toward a more complete quantification of synaptic anatomy and physiology in the rodent hippocampal CA1 region

    VLA imaging of 12CO J = 1-0 and free-free emission in lensed submillimetre galaxies

    Get PDF
    We present a study using the Karl G. Jansky Very Large Array (VLA) of 12CO J = 1-0 emission in three strongly lensed submillimetre-selected galaxies (SMM J16359, SMM J14009 and SMM J02399) at z = 2.5-2.9. These galaxies span LIR = 1011-1013 L⊙, offering an opportunity to compare the interstellar medium of luminous infrared galaxies and ultraluminous infrared galaxies at high redshift. We estimate molecular gas masses in the range of 2-40 × 109 M⊙ using a method that assumes canonical underlying brightness temperature (Tb) ratios for star-forming and non-star-forming gas phases and a maximal star formation efficiency. A more simplistic method - using XCO = 0.8 and the measured Tb ratios - yields gas masses twice as high. In SMM J14009 we find L CO 3-2'/L CO 1-0'=0.95±0.12, indicative of warm, star-forming gas, possibly influenced by the central active galactic nucleus (AGN). We set a gas mass limit of 3σ < 6 × 108 M⊙ for the Lyman break galaxy, A2218 #384, located in the same field as SMM J16359 at z = 2.515. Finally, we use the rest-frame ˜115 GHz free-free flux densities for SMM J14009 and SMM J02399 - measurements tied directly to the photoionization rate of massive stars, and made possible by VLA's bandwidth - to estimate star formation rates (SFRs) of 400-600 M⊙ yr-1 and to estimate the fraction of LIR due to AGN

    Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition

    Full text link
    In this paper we investigate the effect of stochasticity in the spatial and temporal distribution of supernova remnants on the spectrum and chemical composition of cosmic rays observed at Earth. The calculations are carried out for different choices of the diffusion coefficient D(E) experienced by cosmic rays during propagation in the Galaxy. In particular, at high energies we assume that D(E)\sim E^{\delta}, with δ=1/3\delta=1/3 and δ=0.6\delta=0.6 being the reference scenarios. The large scale distribution of supernova remnants in the Galaxy is modeled following the distribution of pulsars, with and without accounting for the spiral structure of the Galaxy. We find that the stochastic fluctuations induced by the spatial and temporal distribution of supernovae, together with the effect of spallation of nuclei, lead to mild but sensible violations of the simple, leaky-box-inspired rule that the spectrum observed at Earth is N(E)EαN(E)\propto E^{-\alpha} with α=γ+δ\alpha=\gamma+\delta, where γ\gamma is the slope of the cosmic ray injection spectrum at the sources. Spallation of nuclei, even with the small rates appropriate for He, may account for slight differences in spectral slopes between different nuclei, providing a possible explanation for the recent CREAM observations. For δ=1/3\delta=1/3 we find that the slope of the proton and helium spectra are 2.67\sim 2.67 and 2.6\sim 2.6 respectively at energies above 1 TeV (to be compared with the measured values of 2.66±0.022.66\pm 0.02 and 2.58±0.022.58\pm 0.02). For δ=0.6\delta=0.6 the hardening of the He spectra is not observed. We also comment on the effect of time dependence of the escape of cosmic rays from supernova remnants, and of a possible clustering of the sources in superbubbles. In a second paper we will discuss the implications of these different scenarios for the anisotropy of cosmic rays.Comment: 28 pages, To appear in JCA

    Deformation of Small Compressed Droplets

    Full text link
    We investigate the elastic properties of small droplets under compression. The compression of a bubble by two parallel plates is solved exactly and it is shown that a lowest-order expansion of the solution reduces to a form similar to that obtained by Morse and Witten. Other systems are studied numerically and results for configurations involving between 2 and 20 compressing planes are presented. It is found that the response to compression depends on the number of planes. The shear modulus is also calculated for common lattices and the stability crossover between f.c.c.\ and b.c.c.\ is discussed.Comment: RevTeX with psfig-included figures and a galley macr

    Mirror Symmetry and Other Miracles in Superstring Theory

    Get PDF
    The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam's 'no miracles argument' that, I argue, many string theorists in fact espouse. String theory leads to many surprising, useful, and well-confirmed mathematical 'predictions' - here I focus on mirror symmetry. These predictions are made on the basis of general physical principles entering into string theory. The success of the mathematical predictions are then seen as evidence for framework that generated them. I attempt to defend this argument, but there are nonetheless some serious objections to be faced. These objections can only be evaded at a high (philosophical) price.Comment: For submission to a Foundations of Physics special issue on "Forty Years Of String Theory: Reflecting On the Foundations" (edited by G. `t Hooft, E. Verlinde, D. Dieks and S. de Haro)
    corecore