5 research outputs found

    Practical support for evaluating efficiency factors of a space heating system in cold climates : modelling and simulation of hydronic panel radiator with different location of connection pipes

    Get PDF
    Plenty of technical norms, included in the EPBD umbrella, assess the performance of buildings or its sub-systems in terms of efficiency. In particular, EN 15316 and its sub-sections, determine the system energy requirements and the system efficiencies of space heating system. This paper focuses on the estimation of efficiencies for emission of hydronic radiators. The assessment of efficiencies for emission occurs by evaluating the amount of heat emitted  from the heat emitter and the extra thermal losses towards building envelope. The heat emitted from radiators varies during the heating up/cooling down phases. A factor that influences the heat emitted during these phases is the location of connection pipes of the radiator. Connection pipes can be located on opposite side or at the same side of the radiator. To better estimate the heat emitted from radiators a transient model with multiple storage elements is used in a building simulation model. Sensitivity analysis encompasses all  the possible variations on extra thermal losses due to the building location in different climates, the heaviness of active thermal mass and the type of radiator local control. The final outcome of this paper is a practical support where the designer can easily assess the efficiencies for emission of hydronic radiators  for Swedish buildings. As main result, (i) the efficiency for control of space heating system is higher in Northern climates than in Southern climates, (ii) heavy active thermal masses allow higher efficiencies for emission than light active thermal masses, (iii) connection pipes located on the same side of the radiator enable higher efficiencies for emission than pipes located on opposite side

    Lipid Droplets and Peroxisomes:Key Players in Cellular Lipid Homeostasis or A Matter of Fat-Store 'em Up or Burn 'em Down

    Get PDF
    <p>Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell-as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide.</p>
    corecore