1,075 research outputs found

    Evolution of active and polar photospheric magnetic fields during the rise of Cycle 24 compared to previous cycles

    Full text link
    The evolution of the photospheric magnetic field during the declining phase and minimum of Cycle 23 and the recent rise of Cycle 24 are compared with the behavior during previous cycles. We used longitudinal full-disk magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM), the Spectromagnetograph and the 512-Channel Magnetograph instruments, and longitudinal full-disk magnetograms from the Mt. Wilson 150-foot tower. We analyzed 37 years of observations from these two observatories that have been observing daily, weather permitting, since 1974, offering an opportunity to study the evolving relationship between the active region and polar fields in some detail over several solar cycles. It is found that the annual averages of a proxy for the active region poloidal magnetic field strength, the magnetic field strength of the high-latitude poleward streams, and the time derivative of the polar field strength are all well correlated in each hemisphere. These results are based on statistically significant cyclical patterns in the active region fields and are consistent with the Babcock-Leighton phenomenological model for the solar activity cycle. There was more hemispheric asymmetry in the activity level, as measured by total and maximum active region flux, during late Cycle 23 (after around 2004), when the southern hemisphere was more active, and Cycle 24 up to the present, when the northern hemisphere has been more active, than at any other time since 1974. The active region net proxy poloidal fields effectively disappeared in both hemispheres around 2004, and the polar fields did not become significantly stronger after this time. We see evidence that the process of Cycle 24 field reversal has begun at both poles.Comment: Accepted for publication in Solar Physic

    ESC NN-Potentials in Momentum Space. I. PS-PS Exchange Potentials

    Get PDF
    A momentum space representation is derived for the Nijmegen Extended-Soft-Core (ESC) interactions. The partial wave projection of this representation is carried through, in principle for Two-Meson-Exchange (TME) in general. Explicit results for the momentum space partial wave NN-potentials from PS-PS-Exchange are given.Comment: 23 pages, 2 PostScript figures, revtex

    A gamma- and X-ray detector for cryogenic, high magnetic field applications

    Full text link
    As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was operated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector is presented, as well as information on operation of APDs at cryogenic temperatures

    Singularities of bi-Hamiltonian systems

    Get PDF
    We study the relationship between singularities of bi-Hamiltonian systems and algebraic properties of compatible Poisson brackets. As the main tool, we introduce the notion of linearization of a Poisson pencil. From the algebraic viewpoint, a linearized Poisson pencil can be understood as a Lie algebra with a fixed 2-cocycle. In terms of such linearizations, we give a criterion for non-degeneracy of singular points of bi-Hamiltonian systems and describe their types

    Radiative β decay of the free neutron

    Get PDF
    The theory of quantum electrodynamics predicts that the β decay of the neutron into a proton, electron, and antineutrino is accompanied by a continuous spectrum of emitted photons described as inner bremsstrahlung. While this phenomenon has been observed in nuclear β decay and electron-capture decay for many years, it has only been recently observed in free-neutron decay. We present a detailed discussion of an experiment in which the radiative decay mode of the free neutron was observed. In this experiment, the branching ratio for this rare decay was determined by recording photons that were correlated with both the electron and proton emitted in neutron decay. We determined the branching ratio for photons with energy between 15 and 340 keV to be (3.09±0.32)×10-3 (68% level of confidence), where the uncertainty is dominated by systematic effects. This value for the branching ratio is consistent with theoretical predictions. The characteristic energy spectrum of the radiated photons, which differs from the uncorrelated background spectrum, is also consistent with the theoretical spectrum

    Stability of Non-Abelian Black Holes

    Full text link
    Two types of self-gravitating particle solutions found in several theories with non-Abelian fields are smoothly connected by a family of non-trivial black holes. There exists a maximum point of the black hole entropy, where the stability of solutions changes. This criterion is universal, and the changes in stability follow from a catastrophe-theoretic analysis of the potential function defined by black hole entropy.Comment: 4 Figures to be sent on request,8 pages, WU-AP/33/9

    High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics

    Full text link
    We demonstrate wideband integrated photonic circuits in sputter-deposited aluminum nitride (AlN) thin films. At both near-infrared and visible wavelengths, we achieve low propagation loss in integrated waveguides and realize high-quality optical resonators. In the telecoms C-band (1520-1580 nm), we obtain the highest optical Q factor of 440,000. Critical coupled devices show extinction ratio above 30 dB. For visible wavelengths (around 770 nm), intrinsic quality factors in excess of 30,000 is demonstrated. Our work illustrates the potential of AlN as a low loss material for wideband optical applications

    Marine conservation : towards a multi-layered network approach

    Get PDF
    Valuing, managing and conserving marine biodiversity and a full range of ecosystem services is at the forefront of research and policy agendas. However, biodiversity is being lost at up to a thousand times the average background rate. Traditional disciplinary and siloed conservation approaches are not able to tackle this massive loss of biodiversity because they generally ignore or overlook the interactive and dynamic nature of ecosystems processes, limiting their predictability. To conserve marine biodiversity, we must assess the interactions and impacts among biodiversity and ecosystem services (BD-ES). The scaling up in complexity from single species to entire communities is necessary, albeit challenging, for a deeper understanding of how ecosystem services relate to biodiversity and the roles species have in ecosystem service provision. These interactions are challenging to map, let alone fully assess, but network and system-based approaches provide a powerful way to progress beyond those limitations. Here, we introduce a conceptual multi-layered network approach to understanding how ecosystem services supported by biodiversity drive the total service provision, how different stressors impact BD-ES and where conservation efforts should be placed to optimize the delivery of ecosystem services and protection of biodiversity

    Using Cox's Proportional Hazard Models to Implement Optimal Strategies: An Example from Behavioural Ecology

    Get PDF
    Simple behavioural rules, or "rules of thumb", which lead to behaviour that closely approximates an optimal strategy, have generated a lot of recent interest in the field of foraging behaviour. In this paper, we derive rules of thumb from a stochastic simulation model in which the foragers behave optimally. We use a particular biological system: the patch leaving behaviour of a parasitoid. We simulate parasitoids whose patch leaving behaviour is determined by a stochastic dynamic programming (SDP) model, while allowing parasitoids to make mistakes in their estimation of host density when arriving in a patch. We use Cox's proportional hazards models to obtain statistical rules of thumb from the simulated behaviour. This represents the first use of a proportional hazard approximation to generate rules of thumb from a complex optimal strategy

    Signatures of the slow solar wind streams from active regions in the inner corona

    Full text link
    Some of local sources of the slow solar wind can be associated with spectroscopically detected plasma outflows at edges of active regions accompanied with specific signatures in the inner corona. The EUV telescopes (e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes observed extended ray-like structures seen at the limb above active regions in 1MK iron emission lines and described as "coronal rays". To verify the relationship between coronal rays and plasma outflows, we analyze an isolated active region (AR) adjacent to small coronal hole (CH) observed by different EUV instruments in the end of July - beginning of August 2009. On August 1 EIS revealed in the AR two compact outflows with the Doppler velocities V =10-30 km/s accompanied with fan loops diverging from their regions. At the limb the ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July 31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic field lines expanded to the streamer stalks. Using the DEM analysis, it was found that the fan loops diverged from the outflow regions had the dominant temperature of ~1 MK, which is similar to that of the outgoing plasma streams. Parameters of the solar wind measured by STEREO-B, ACE, WIND, STEREO-A were conformed with identification of the ARCH as a source region at the Wang-Sheeley-Arge map of derived coronal holes for CR 2086. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.Comment: Accepted for publication in Solar Physics; 31 Pages; 13 Figure
    corecore