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Abstract 

Simple behavioural rules, or "rules of thumb", which lead to behaviour that closely approximates an 
optimal strategy, have generated a lot of recent interest in the field of foraging behaviour. In this 
paper, we derive rules of thumb from a stochastic simulation model in which the foragers behave 
optimally. We use a particular biological system: the patch leaving behaviour of a parasitoid. We 
simulate parasitoids whose patch leaving behaviour is determined by a stochastic dynamic 
programming (SDP) model, while allowing parasitoids to make mistakes in their estimation of host 
density when arriving in a patch. We use Cox's proportional hazards models to obtain statistical 
rules of thumb from the simulated behaviour. This represents the first use of a proportional hazard 
approximation to generate rules of thumb from a complex optimal strategy.  
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1. Introduction 
 
Stochastic dynamic programming (SDP) models are widely used to find state-dependent 
optimal solutions in biology [1], especially in the study of foraging behaviour (optimal 
foraging theory or OFT). The SDP approach is a very efficient way to find state-dependent 
optimal strategies in a stochastic system. However, such strategies are often very complex, 
especially when the state space is large, and it is very unlikely that a simple organism could 
implement such complex behaviour. Animals can potentially perform close to the optimum 
by using "rules of thumb" [2]. However, the connection between such rules and optimal 
solutions is vague. In this paper, we suggest that Cox's proportional hazards model [3,4] can 
condense the results of an SDP model into rules that could be easily implemented by an 
animal. A reliable method to translate complex optimal strategies from an optimization 
procedure into simple rules has wide application. In fields outside foraging behaviour, rules 
of thumb are used in conservation, e.g., management of plant populations [5], reserve design 
[6], integrated range resources management [7], and fisheries management [8]. 

For the remainder of this paper, we use a specific ecological example from foraging theory 
to demonstrate the suggested method of translating optimal strategies into rules of thumb. 
The optimal length of time a consumer should exploit a patch of depleting resources has been 
widely studied both theoretically and empirically. Furthermore, the answer to this question 
has applications in biocontrol [9], wildlife management [10], and fisheries [11]. Attempts to 
understand the factors influencing the optimal patch exploitation time have fallen into three 
main categories: theoretical optimization models, simple rules of thumb, and statistical 
models of the leaving tendency. 

The best known theoretical model of optimal patch residence times is Charnov's marginal 
value theorem [12]. In this model, a forager leaves a patch when the net rate of energy gain 
drops below the environmental average. This model assumes that patch leaving behaviour is 
independent of internal states of the forager. This rate-maximization approach, in general, 
has difficulty in coping with dynamic states. Stochastic dynamic programming (SDP) 
models find optimal solutions that can take dynamic states of the forager into account [13], 
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but as already discussed, the optimal strategies from these models are often very complex. 
An alternative to predicting an optimal strategy with a mathematical model is to 

summarize what is known about the system in a "rule of thumb". For the patch departure 
problem, the best known rules of thumb are to remain until a fixed number of prey has been 
consumed [14,15], remain for a fixed time period [4], or remain until the time between 
encounters with individual prey exceeds a fixed value [16,17]. However, empirical work 
suggests that these simple rules do not describe patch leaving behaviour adequately [13]. 

The final possibility is to estimate a statistical model directly from observations of 
behaviour. Survival analysis such as Cox's proportional hazards model is widely used to 
study the relationship between the latency of the occurrence of an event (survival times) and 
explanatory variables. The method finds important applications in product life testing and a 
range of disciplines from physics to econometrics [4]. Starting with the pioneering work of 
[18], Cox's proportional hazards models have been used to analyze the behaviour of insects, 
in particular parasitoids [13]. The result is a statistical model of the probability of leaving a 
patch at any given point in time (leaving tendency) as a function of covariates such as the 
density of resources within the patch. In contrast to simple rules of thumb, this model is 
more sophisticated because it incorporates the influence of particular states, i.e., covariates. 
Hence, this statistical model of leaving behaviour can be interpreted as a state-dependent 
rule of thumb. 

The particular consumer in our example is a solitary parasitoid wasp. Empirical results 
in the literature suggest that the patch residence time of parasitoids is influenced by both 
the host density and the number of ovipositions in a patch (see [13] for an overview). 
Generally, the probability of leaving a patch (leaving tendency) is lower the higher the 
number of hosts in that patch. The effect of oviposition depends on the fitness 
consequences of laying more than one egg in a host, or superparasitism. 

Only one larva ever emerges from a single host in a solitary parasitoid. Even so, 
superparasitism can increase fitness under very specific circumstances in solitary 
parasitoids [19,20]. Generally, a wasp would be better off only laying eggs in 
unparasitised hosts. This is particularly true if the parasitoid cannot discriminate 
parasitised from unparasitised hosts. In this case, the wasp must estimate the risk of 
wasting an egg in superparasitism, and this risk increases with each oviposition. 
Therefore, we expect each oviposition to increase the tendency of such parasitoids to 
leave the patch. This effect has been shown to occur for other solitary parasitoids, even 
when error rates in host discrimination are quite low [21]. 

In this paper, we combine statistical modelling of survival processes with optimization 
modelling to simplify an optimal patch leaving strategy for a parasitoid wasp into a rule of 
thumb. First, we construct an SDP model that describes the optimal patch leaving 
behaviour of the parasitoid wasp Cotesia rubecula exploiting patches containing its host, 
the butterfly Pieris rapae. Second, we use a Monte Carlo simulation to generate sequences 
of behavioural decisions by simulated wasps determined by the optimal strategy from the 
SDP. Third, we analyze the simulated decision sequences with a proportional hazards 
model to generate statistically estimated, state-dependent rules of thumb. The end result is a 
state-dependent rule of thumb that is explicitly connected to an optimal foraging model. 
This approach is applicable to areas other than animal behaviour, such as economics and 
industry where rules of thumb are often needed to manage complex state-dependent 
problems. 
 
2. Wasp Behaviour Model 
 

We briefly describe the biological scenario before outlining the structure of the model. 
An adult female wasp oviposits a single egg in its host. After hatching, a wasp larva feeds 
internally on the host's tissue and kills the host at the end of larval development. The host 
larvae live and feed on cabbage plants, and we define a cabbage plant as a patch. During 
her life, a wasp flies from patch to patch foraging for hosts. Plants change the amount and 
composition of odour constituents in response to herbivore damage. These infochemicals 



are attractive to the wasps. It has been demonstrated for some parasitoid species that they 
can distinguish patches with different host densities based on the concentration of 
infochemicals [22]. When a wasp arrives in a patch, she starts searching for hosts. She 
attacks every host she encounters (M. Keller, personal observation), even if the host is 
already parasitised (superparasitism). C. rubecula is a solitary parasitoid, and only one egg 
can develop within a single host [23]. Therefore, the profitability of a plant decreases with 
time, because the risk of encountering a previously parasitised host increases with each 
oviposition, as described in the introduction. Eventually, the wasp leaves the patch to 
search for hosts elsewhere. The optimal time for her to leave depends on the local host 
density, how many eggs she has laid in the current patch, and the distribution of hosts 
among and between patches in the habitat at large (Tenhumberg et al. unpublished 
manuscript). 

In the following, the biological details included in the model and the model structure are 
de-scribed. This model has been described in more detail elsewhere (Tenhumberg et al., 
unpublished manuscript), and a complete sensitivity analysis and description is beyond the 
scope of this paper. We assume that parasitoid females adjust their behaviour to maximize 
their expected lifetime reproduction. This is not necessarily the same as rate maximization, 
which is an instantaneous optimization criterion, rather than a lifetime criterion. We use 
SDP to calculate the optimal behaviours [1]. In the framework of behavioural ecology, SDP 
finds the solution that maximizes some fitness currency. This modelling technique takes 
stochastic events into account and allows the optimal behaviour to vary as a function of 
different states, such as number of ovipositions or host density in a patch. SDP models start 
at the end of an individual's life (the time horizon, T), then work backwards in time to 
calculate for each combination of states the behaviour that results in the highest lifetime 
reproduction. 

The time horizon (T) is determined by the maximum lifespan of forty days [24]. 
Assuming a wasp forages for twelve hours per day and one time step is 2.5 minutes, then 
the maximum foraging time T is 11520 time steps. The state space of the wasp behaviour 
model includes time t (t = 1,2,3,.., 11520) host density d (d = 0,1, 2, ..., 10), number of 
ovipositions e (e = 0, 1, 2, ...,17), and time spent in the current patch tp (tp = 1, 2, ..., 17). 
Therefore, the lifetime fitness function is defined as F(t, d, tp, e). Here, we provide a brief 
description of the most important parts of the model. 

We assume that wasps have perfect knowledge about the average density and 
distribution of hosts in the environment. While in a patch, wasps search for hosts. At a 
given host density, the probability of encountering a host p in each time step is drawn from 
a Poisson distribution. She successfully oviposits an egg with the probability s. As wasps 
cannot distinguish parasitised from unparasitised hosts, we also compute the probability 
that an encountered host has already been parasitised during the current visit (Appendix A). 
Parasitoids receive the fitness payoff a if they oviposit in an unparasitised host; they receive 
zero fitness payoff for ovipositing in already parasitised hosts. Parasitoids spend h time 
steps handling the host. We ignore the possibility that other wasps could have visited the 
patch previously. Wasps remember the time since arrival and the number of ovipositions in 
that patch. 

 When the optimal patch residence time is reached, the wasps leave the patch. Wasps 
encounter a new patch every time step during flight. In order to keep the state space 
manageable, we allow wasps to fly for a maximum of ten time steps, corresponding to 25 
minutes. Field observations indicate that most between plant flights last less than 25 
minutes (Keller, unpublished data). The probability that a patch contains d hosts after flying 
r time steps (λdr; see Tenhumberg et al., unpublished manuscript, for the derivation) 
depends on the distribution of hosts between and among patches. When a wasp encounters 
a patch, she assesses its host density from the infochemical concentration. The probability 
of landing (ϕd) is an increasing function of the host density in that particular patch (Keller, 
unpublished data), and is independent of flight time. 

This scenario is described in the following dynamic programming equation: 
 



 
 

where ml and m2 are the mortality rates in the patch and while flying between patches, respectively, 
with m1 < m2. The payoff for leaving a plant is summed over all possible encounters with plants up to 
the maximum flight time of ten steps, conditional on not landing in any previous time step. pgood,  
pbad, or p0  are the probabilities of encountering an unparasitised, parasitised, or no host; hostgood, 
hostbad, or host0 are the corresponding payoffs, defined as follows: 

 

Numerical values for the parameters used in the example are given in Table 1. 
 
Table 1. Parameter values and functions included in the SDP model. (d = host density in patch.) 
 

 
 

3. Simulation Experiment 
We used Monte Carlo simulations to examine how host density and number of ovipositions influence the 
behaviour of wasps that use the optimal strategy determined by the SDP (see Section 2) and analyze the 
simulation results with Cox's proportional hazards analysis. We choose to use these state variables based on 
our expectation that they are the primary determinants of patch leaving behaviour in C. rubecula. For 
the statistical analysis not to degenerate, we need variability in the behaviour of wasps, but all wasps from 
the SDP model behave in the same way given the same host density and number of ovipositions. In order 
to add variability, we allowed the wasps in the simulations to make mistakes in estimating the host 
density of patches. Note, in the SDP model, wasps never make mistakes. The estimate of wasps arriving 
in a patch is drawn from a normal distribution with mean d (i.e., the actual number of hosts present) 



and a standard deviation of two. These errors will influence the landing probability of wasps (ϕd) which 
is dependent on host density. We recorded the "giving up time" (GUT), which is the period of time from 
the last oviposition until the wasp leaves. If there is no oviposition, the GUT is simply the total time 
spent in the patch. To study the effect of host density d, we released simulated wasps on patches of 0, 
2, 4, 6, 8, and 10 hosts, respectively. To examine the effect of previous ovipositions e, we allowed the 
wasps to oviposit n = 0,1, . . . , 5 times, and then we set the probability to find another host equal to 
zero. This way we obtained GUT for each density and after 0-5 ovipositions. This simulation 
experiment generates results with a similar structure to other empirical work on parasitoid leaving 
tendency [25]. 
 
4. Proportional Hazards Analysis 

We analyzed the distribution of GUT of simulated wasps using the optimal strategy provided by the 
SDP with Cox's proportional hazards model. The result is a statistical rule of thumb of the optimal 
strategy. We assume that parasitoids have a basic tendency to perform a certain behaviour (baseline 
hazard), which is reset after certain renewal points. The observed hazard rate is assumed to be the 
product of the baseline hazard and a factor that gives the joint effect of a set of covariates  z1, . . . , zp. 
The general form of the model is 

 
 
where λ (t; z) denotes the observed hazard rate, λ0(t) the baseline hazard, t is the time since 
the last renewal point, and β1,…, βp are the relative contributions of the covariates. The 
form of λ0(t) is left unspecified. The baseline hazard λ0(t) and β1,…, βp are estimated by 
means of likelihood maximization (see [3,18] for further details). 

We formulated the model in terms of the leaving tendency. This is the chance per 
time unit that a wasp leaves a patch, given that she is currently in a patch. Note, a leaving 
tendency is different from a GUT; the GUTs are the data used to calculate the leaving 
tendency. We assume that λ0 is reset after each oviposition and after each time the patch 
has been left and re-entered. In the model, we include the covariates host density d and 
number of ovipositions e in the current patch. To examine whether the effect of oviposition 
depends on the oviposition number, we included for each oviposition a separate covariate. 
Therefore, the leaving tendency is 
 

 
 
where t is the time since the last renewal point, ei refers to 1-5 ovipositions, d represents 
the host density in a given patch, and are the corresponding covariates. Note, when i 
ovipositions have occurred, β1,…, βi are all 1. For example, when a wasp arrives in a patch 
with two hosts, then el, ... , e5 = 0 and d = 2; after her first oviposition, el changes to 1, 
while all other covariates remain the same. 

We tested the fit of the model using Martingale residuals [26]. The proportionality 
assumption was tested via stratification, which is dividing the original sample into 
subgroups (= strata) according to the value of the variable d, respectively. The stratification 
results and the Martingale residuals are illustrated in Appendix B. 
 
 
 
 



5. Results 
The average GUT for simulated C. rubecula increases with host density and decreases with 
the number of ovipositions in the current patch (Figure 1). The curves representing the 
increase in GUT with host density for 0-1 ovipositions are virtually parallel. As the number 
of ovipositions increases, the slope decreases, indicating a decreasing effect of host density 
on the patch leaving behaviour of the wasps. After five ovipositions, there is no effect of 
host density (horizontal curve). Wasps may lay an egg in an already parasitised host 
(superparasitism), which may result in more ovipositions than there are hosts present, e.g., 
three ovipositions at a host density of two. The risk of superparasitism decreases with host 
density. Five ovipositions occurred only at host densities of six or more, suggesting that 
most ovipositions were in unparasitised hosts. 
 

 
 
Figure 1. Average GUT as a function of host density. The numbers on the right-hand side of the curves 
indicate the number of ovipositions before leaving the patch. 
 
We quantified the influence of host density and number of ovipositions of simulated wasps 
using Cox's proportional hazards model. The baseline leaving tendency λ0(t) is illustrated 
in Figure 2, and the estimates of the coefficients if the covariates (βi) are given in Table 2. 
Now, we use these results to replace the parameters of equation (8) and obtain the rule of 
thumb. The β-values indicate how the baseline leaving tendency changes with host density 
and number of ovipositions. A negative value of βi indicates a reduced leaving tendency or 
increased GUT. The higher the host density, the lower the probability that a wasp leaves a 
patch. Here, the β-value refers to the change in the different density classes of the 
simulation experiment (d = 0, 2, 4, 6, 8,10). For example, when the host density was two, 
the leaving tendency was 72% (i.e., exp[-0.324]) of the baseline leaving tendency when 
there were no hosts on the plant. 

Each subsequent oviposition increases the leaving tendency (positive β-values). 
However, their influence depends on the total number of ovipositions. The first three 
ovipositions have progressively greater influence on the leaving tendency. The leaving 
tendency of a female wasp increases by 30% (exp[0.258]) after she lays her first egg, and 
4.5 times (exp[1.513]) higher after she lays her third egg. The influence of subsequent 
ovipositions is intermediate in strength to that of the first and second ovipositions. 



 
 
Figure 2. Cumulative baseline leaving tendency A0 (see equation (8)). 
 
The quality of the statistical rule is indicated overall by the r2 value for the entire model of 
0.61 (Table 2). This seems reasonable given that half of the state variables included in the 
SDP were not included in the proportional hazard fit. None of the other rules of thumb 
suggested in the introduction can produce the kinds of patterns observed, because they 
predict fixed, state-independent outcomes. A direct comparison is not warranted. 
 
Table 2. Estimates of the coefficients of the covariates (see text for details). 

 

6. Conclusions 
This paper has explored a novel method of deriving rules of thumb from optimal state-dependent 

behaviour. We developed an SDP model of the patch leaving behaviour of a parasitoid wasp. The SDP 
model provides an optimal strategy for each combination of time, number of ovipositions, and host 
density in a patch (see state space given in Section 2); consequently, the optimal strategy provides for 
2,280,960 different situations a unique optimal patch residence time. 

Then, we condensed the complex results of the SDP into rules of thumb by analysing the 
behaviour of simulated wasps, whose behaviour is determined by the SDP, with Cox's 
proportional hazards model. The general approach will be useful where optimal decisions are 
state dependent, and can be expressed as the probability of taking an action at some specified 
point in time. 

Our example biological optimization problem is the optimal time for a parasitoid to leave a 
patch. The solution depends on the trade-off between the costs and benefits of staying in a 



particular patch. These trade-offs are quite different for predators. Predators deplete a patch 
by consuming prey, reducing prey density over time. Decreasing prey density increases 
search costs and decreases encounter rates, and eventually it is advantageous for the 
predators to leave the patch and hunt elsewhere [27]. In parasitoids, patch exploitation results 
in a reduction of host qualities. Parasitised hosts are of low quality, especially for solitary 
parasitoids, such as C. rubecula, where only one larva can develop in a single host [23]. The 
source of costs for a parasitoid to remain in a patch depends on her ability to recognize 
parasitised hosts. For parasitoid species that can recognize parasitised hosts, patches become 
less valuable as more time is spent assessing already parasitised hosts. For parasitoid species 
that lack the ability to recognize parasitised hosts, wasps are more likely to lay an egg in an 
already parasitised host (superparasitism). Hence, wasps waste more and more eggs in 
superparasitism. How costly this egg wastage is depends on how egg limited the species is. 

We studied the effect of host density and oviposition on patch leaving behaviour. However, 
we could easily have included other factors in the foraging environment, such as the 
distribution of resources within and between patches and travel times between patches, by 
extending the vector of the covariates (βizi, see equation (7)) of the Cox's proportional 
hazards model. 

Our derived rule of thumb is admittedly only an approximation of the optimal strategy. 
Given the underlying noise in behavioural records of real animals, this approach probably 
describes their behaviour adequately. In fields outside of behaviour, such as decision theory, 
it might be advantageous to implement the optimal strategy, even if the optimal strategy is 
very complex. If the decision being approximated carried a high penalty for poor decisions, 
e.g., burning patches of scrub containing endangered species [28], a thorough analysis of the 
derived rule would include an estimate of how costly its use is relative to the optimal 
decision. In such an analysis, the cost of obtaining sufficient accurate information to 
implement the optimal strategy would also have to be included. 

There are several advantages to simplifying complex optimal strategies using our method. 
First, the interpretation of the covariates is straightforward. Consequently, our derived rules 
of thumb provide more easily interpreted insights than SDP results, especially if the state 
space is large. Second, the validity of rules of thumb can easily be tested empirically simply 
by comparing the β-values against empirical data. Third, the possibility of condensing the 
results of SDP models makes it feasible to incorporate optimal behaviour of individuals into 
population models. This increases the chances that the model will tell us something relevant 
about particular systems. For example, the patch leaving behaviour of animals could be 
directly implemented in an individual-based population model by using equation (8). 
Alternatively, rules of thumb could be used to estimate species specific attack rates of 
parasitoids in patches with different host densities, or the aggregation of parasitoids in 
patches with higher host densities. Both are common elements of population models. This 
will close the gap between optimality models of individual behaviour and population models. 
Even simple representations of optimal behaviour can have profound effects on population 
dynamics [29]. Including optimal behaviour invites realistic population models tailored to 
specific systems. Specific and realistic models will also be useful as tools for addressing 
applied questions, such as the relative performance of predators in biological control [30]. 

This paper represents the first use of a proportional hazards approximation to generate 
rules of thumb from a complex optimal strategy. This approach is applicable to areas other 
than animal behaviour such as economics, industry, and natural resource management, 
where rules of thumb are often needed to manage complex state-dependent problems. 



APPENDIX A 
SDP MODEL 

The probability of encountering an unparasitised host depends on the number of eggs 
that have already been laid, and the number of hosts into which they have been laid (Table 
Al). The key is the probability distribution of the number of parasitised hosts on the plant, 
A. This can be calculated iteratively for each host density using the observation that a 
particular number of parasitised hosts can only arise in two ways, if hosts are parasitised 
one at a time. First, if the encountered host is unparasitised, there will be one more 
parasitised host. Second, if the encountered host is parasitised, then the number of 
parasitised hosts will not change. The probability of i parasitised hosts after e eggs have 
been laid is  

 

where Ai is the probability that there are i  parasitised hosts after laying e -1 eggs, and d is the 
number of hosts in the patch. The initial distribution for e = 0 is 

 

We use this to calculate pgood for a patch with d hosts and e eggs already laid as the sum 
of the probability of encountering an unparasitised host when i hosts have been parasitised 
times the probability that i hosts have been parasitised, 

 

By applying (A1) and (A3) iteratively from e = 1 up to the maximum number of eggs laid 
in a patch, we get all the probabilities required. 

Table Al. Probability of encountering an unparasitised host as a function of host density in the patch 
(# hosts) and the number of eggs already laid. 

 

 



APPENDIX B 
COX'S PROPORTIONAL HAZARDS MODEL 

The validity of proportionality assumption for our model is demonstrated in Figure Al. 
The baseline hazards stratified for host density are parallel; i.e., the lines do not cross each 
other. The functional form of proportional hazard models can be checked with the Martingale 
residuals. Martingale residuals are different from standard residuals; the largest possible 
value is one, and outliers are represented by large negative values. A smooth fit to the 
Martingale residuals should be horizontal, as shown in Figure A2. 

 
 
 

 
 
Figure Al. Cumulative leaving tendencies stratified for host densities (λd). (From top down: 0, 2, 4, 8, 10 hosts 
per plant.) 
 

 
 
Figure A2. Martingale residuals versus host density for Cox's proportional  hazards model. 
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