3,116 research outputs found

    Examining the link between chromosomal instability and aneuploidy in human cells

    Get PDF
    Solid tumors can be highly aneuploid and many display high rates of chromosome missegregation in a phenomenon called chromosomal instability (CIN). In principle, aneuploidy is the consequence of CIN, but the relationship between CIN and aneuploidy has not been clearly defined. In this study, we use live cell imaging and clonal cell analyses to evaluate the fidelity of chromosome segregation in chromosomally stable and unstable human cells. We show that improper microtubule–chromosome attachment (merotely) is a cause of chromosome missegregation in unstable cells and that increasing chromosome missegregation rates by elevating merotely during consecutive mitoses generates CIN in otherwise stable, near-diploid cells. However, chromosome missegregation compromises the proliferation of diploid cells, indicating that phenotypic changes that permit the propagation of nondiploid cells must combine with elevated chromosome missegregation rates to generate aneuploid cells with CIN

    Investor Reluctance to Invest in Foreign Equities

    Get PDF

    Language-Naive Chimpanzees (Pan troglodytes) Judge Relations Between Relations in a Conceptual Matching-to-Sample Task

    Get PDF
    Three chimpanzees with a history of conditional and numeric token training spontaneously matched relations between relations under conditions of nondifferential reinforcement. Heretofore, this conceptual ability was demonstrated only in language-trained chimpanzees. The performance levels of the language-naive animals in this study, however, were equivalent to those of a 4th animal—Sarah—whose history included language training and analogical problem solving. There was no evidence that associative factors mediated successful performance in any of the animals. Prior claims of a profound disparity between language-trained and language-naive chimpanzees apparently can be attributed to prior experience with arbitrary tokens consistently associated with abstract relations and not language per se

    Sustainability Survey report

    Get PDF
    Although the idea of sustainability means different things to different people, one of the most common definitions comes from the UN’s 1987 Brundtland Report, which states that sustainability is that which meets the needs of the present without compromising the ability of future generations to meet their own needs. In practice, sustainability means balancing environmental protection with economic vitality and social justice. Since the 1990s, sustainability has become a powerful framework for organizational transformation, particularly at institutions of higher education. Today over 1,350 colleges and universities offer degrees in sustainability and use sustainability as a guiding principle for administrative decisions across campus. On our own campus, the Environmental Studies and Sustainability major grew 144% in the past year while enrollment in other programs declined. For many people born in the early twenty-first century, sustainability is an exciting movement that seeks solutions to the daunting economic, environmental, and social problems that their generation will face. As training grounds for the future, universities like Northern have a responsibility to prepare today’s students for these global challenges

    Bulk meltwater flow and liquid water content of snowpacks mapped using the electrical self-potential (SP) method

    Get PDF
    Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. We show here that strong electrical self-potential fields are generated in melting in situ snowpacks at Rhone Glacier and Jungfraujoch Glacier, Switzerland. In agreement with theory, the diurnal evolution of self-potential magnitudes ( ∼ 60–250mV) relates to those of bulk meltwater fluxes (0–1.2 × 10−6m3s−1) principally through the permeability and the content, electrical conductivity and pH of liquid water. Previous work revealed that when fresh snow melts, ions are eluted in sequence and electrical conductivity, pH and self-potential data change diagnostically. Our snowpacks had experienced earlier stages of melt, and complementary snow pit measurements revealed that electrical conductivity ( ∼ 1–5 × 10−6Sm−1) and pH ( ∼ 6.5–6.7) as well as permeabilities (respectively  ∼ 9.7 × 10−5 and  ∼ 4.3 × 10−5m2 at Rhone Glacier and Jungfraujoch Glacier) were invariant. This implies, first, that preferential elution of ions was complete and, second, that our self-potential measurements reflect daily changes in liquid water contents. These were calculated to increase within the pendular regime from  ∼ 1 to 5 and  ∼ 3 to 5.5% respectively at Rhone Glacier and Jungfraujoch Glacier, as confirmed by ground truth measurements. We conclude that the electrical self-potential method is a promising snow and firn hydrology sensor owing to its suitability for (1) sensing lateral and vertical liquid water flows directly and minimally invasively, (2) complementing established observational programs through multidimensional spatial mapping of meltwater fluxes or liquid water content and (3) monitoring autonomously at a low cost. Future work should focus on the development of self-potential sensor arrays compatible with existing weather and snow monitoring technology and observational programs, and the integration of self-potential data into analytical frameworks.ISSN:1994-0416ISSN:1994-042

    MicroRNA Expression Patterns in Human Anterior Cingulate and Motor Cortex: A Study of Dementia with Lewy Bodies Cases and Controls

    Get PDF
    Overview MicroRNAs (miRNAs) have been implicated in neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease (AD). Here, we evaluated the expression of miRNAs in anterior cingulate (AC; Brodmann area [BA] 24) and primary motor (MO; BA 4) cortical tissue from aged human brains in the University of Kentucky AD Center autopsy cohort, with a focus on dementia with Lewy bodies (DLB). Methods RNA was isolated from gray matter of brain samples with pathology-defined DLB, AD, AD+DLB, and low-pathology controls, with n=52 cases initially included (n=23 with DLB), all with low (\u3c4hrs) postmortem intervals. RNA was profiled using Exiqon miRNA microarrays. Quantitative PCR for post-hoc replication was performed on separate cases (n=6 controls) and included RNA isolated from gray matter of MO, AC, primary somatosensory (BA 3), and dorsolateral prefrontal (BA 9) cortical regions. Results The miRNA expression patterns differed substantially according to anatomic location: of the relatively highly-expressed miRNAs, 150/481 (31%) showed expression that was different between AC versus MO (at p\u3c0.05 following correction for multiple comparisons), most (79%) with higher expression in MO. A subset of these results were confirmed in qPCR validation focusing on miR-7, miR-153, miR-133b, miR-137, and miR-34a. No significant variation in miRNA expression was detected in association with either neuropathology or sex after correction for multiple comparisons. Conclusion A subset of miRNAs (some previously associated with α-synucleinopathy and/or directly targeting α-synuclein mRNA) were differentially expressed in AC and MO, which may help explain why these brain regions show differences in vulnerability to Lewy body pathology

    Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant

    Get PDF
    Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (~1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers

    Diverse and Variable Community Structure of Picophytoplankton across the Laurentian Great Lakes

    Get PDF
    The Laurentian Great Lakes provide economic support to millions of people, drive biogeochemical cycling, and are an important natural laboratory for characterizing the fundamental components of aquatic ecosystems. Small phytoplankton are important contributors to the food web in much of the Laurentian Great Lakes. Here, for the first time, we reveal and quantify eight phenotypically distinct picophytoplankton populations across the Lakes using a multilaser flow cytometry approach, which distinguishes cells based on their pigment phenotype. The distributions and diversity of picophytoplankton flow populations varied across lakes and depths, with Lake Erie standing out with the highest diversity. By sequencing sorted cells, we identified several distinct lineages of Synechococcales spanning Subclusters 5.2 and 5.3. Distinct genotypic clusters mapped to phenotypically similar flow populations, suggesting that there may not be a clear one-to-one mapping between genotypes and phenotypes. This suggests genome-level differentiation between lakes but some degree of phenotypic convergence in pigment characteristics. Our results demonstrate that ecological selection for locally adapted populations may outpace homogenization by physical transport in this interconnected system. Given the reliance of the Lakes on in situ primary production as a source for organic carbon, this work sets the foundation to test how the community structure of small primary producers corresponds to biogeochemical and food web functions of the Great Lakes and other freshwater systems
    • …
    corecore