337 research outputs found

    Anisotropic three-dimentional magnetic fluctuations in heavy fermion CeRhIn5

    Full text link
    CeRhIn5 is a heavy fermion antiferromagnet that orders at 3.8 K. The observation of pressure-induced superconductivity in CeRhIn5 at a very high Tc of 2.1 K for heavy fermion materials has led to speculations regarding to its magnetic fluctuation spectrum. Using magnetic neutron scattering, we report anisotropic three-dimensional antiferromagnetic fluctuations with an energy scale of less than 1.7 meV for temperatures as high as 3Tc. In addition, the effect of the magnetic fluctuations on electrical resistivity is well described by the Born approximation.Comment: 4 pages, 4 figure

    Advancing Long-Term Care Science Through Using Common Data Elements: Candidate Measures for Care Outcomes of Personhood, Well-Being, and Quality of Life

    Get PDF
    To support the development of internationally comparable common data elements (CDEs) that can be used to measure essential aspects of long-term care (LTC) across low-, middle-, and high-income countries, a group of researchers in medicine, nursing, behavioral, and social sciences from 21 different countries have joined forces and launched the Worldwide Elements to Harmonize Research in LTC Living Environments (WE-THRIVE) initiative. This initiative aims to develop a common data infrastructure for international use across the domains of organizational context, workforce and staffing, person-centered care, and care outcomes, as these are critical to LTC quality, experiences, and outcomes. This article reports measurement recommendations for the care outcomes domain, focusing on previously prioritized care outcomes concepts of well-being, quality of life (QoL), and personhood for residents in LTC. Through literature review and expert ranking, we recommend nine measures of well-being, QoL, and personhood, as a basis for developing CDEs for long-term care outcomes across countries. Data in LTC have often included deficit-oriented measures; while important, reductions do not necessarily mean that residents are concurrently experiencing well-being. Enhancing measurement efforts with the inclusion of these positive LTC outcomes across countries would facilitate international LTC research and align with global shifts toward healthy aging and person-centered LTC models

    Magnetic Field Generation in Stars

    Get PDF
    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field generation in stars to appear in Space Science Reviews, Springe

    Hansenula polymorpha Swi1p and Snf2p are essential for methanol utilisation

    Get PDF
    We have cloned the Hansenula polymorpha SWI1 and SNF2 genes by functional complementation of mutants that are defective in methanol utilisation. These genes encode proteins similar to Saccharomyces cerevisiae Swi1p and Snf2p, which are subunits of the SWI/SNF complex. This complex belongs to the family of nucleosome-remodeling complexes that play a role in transcriptional control of gene expression. Analysis of the phenotypes of constructed H. polymorpha SWI1 and SNF2 disruption strains indicated that these genes are not necessary for growth of cells on glucose, sucrose, or various organic nitrogen sources which involve the activity of peroxisomal oxidases. Both disruption strains showed a moderate growth defect on glycerol and ethanol, but were fully blocked in methanol utilisation. In methanol-induced cells of both disruption strains, two peroxisomal enzymes involved in methanol metabolism, alcohol oxidase and dihydroxyacetone synthase, were hardly detectable, whereas in wild-type cells these proteins were present at very high levels. We show that the reduction in alcohol oxidase protein levels in H. polymorpha SWI1 and SNF2 disruption strains is due to strongly reduced expression of the alcohol oxidase gene. The level of Pex5p, the receptor involved in import of alcohol oxidase and dihydroxyacetone synthase into peroxisomes, was also reduced in both disruption strains compared to that in wild-type cells.
    corecore