1,249 research outputs found

    Evolução molecular, divergência funcional e aspectos estruturais da família gênica da álcool desidrogenase

    Get PDF
    A álcool desidrogenase é uma família gênica classicamente conhecida como pertencente à via glicolítica, dimérica em animais e plantas, mas tetramérica em fungos e alguns invertebrados. A proteína ADH (álcool desidrogenase) possui dois domínios principais: o domínio de ligação da coenzima, formado por um motivo estrutural conhecido como Rossman fold (seis fitas betas paralelas ligadas por alfa hélices); e o domínio catalítico. Análises filogenéticas mostraram que essa família estrutura-se formando três clusters principais, correspondentes a sequências de animais, plantas e fungos. As classes 1 e 2 de ADH de Caenorhabditis elegans agruparam-se próximas ao cluster monofilético das ADHs de fungos, muito provavelmente porque também são tetraméricas. Em animais e plantas, houve a formação de clados de acordo com o tipo de ADH, já em fungos os agrupamentos devem-se ao tipo de ADH e gênero do organismo. O padrão de evolução dessa família gênica pode ser explicado através do modelo por nascimento e morte. Estudos teóricos de divergência funcional conduzidos nos três grupos de organismos previamente citados indicaram os sítios que, provavelmente, estão submetidos a processos de surgimento de novidades funcionais após a duplicação gênica. As regiões onde foram encontrados os maiores números de aminoácidos divergentes incluem a região de ligação do segundo átomo de zinco, o segmento de interação entre os monômeros e o sítio ativo. Foram construídos dezessete modelos da estrutura tridimensional de ADH em plantas pertencentes a quatro famílias botânicas, a partir da modelagem molecular comparativa. Os resíduos funcionalmente divergentes foram localizados nas estruturas modeladas, tendo sido também encontradas diferenças no potencial eletrostático e no pI (ponto isoelétrico).Alcohol dehydrogenase (ADH) is a gene family known to function in the glycolytic pathway, being dimeric in animals and plants, but tetrameric in fungi and some invertebrates. This protein presents two main domains: one which binds to the coenzyme, formed by a structural motif known as Rossman fold (six parallel beta sheets connected by alpha helices); and the catalytic domain. Phylogenetic analyses showed that this family is structured in three main clusters, corresponding to animal, plant, and fungi sequences. Caenorhabditis elegans ADHs 1 and 2 are placed near the fungi ADH monophyletic cluster, probably because they are also tetrameric. In mammals and plants clade formation occurs by ADH type, while in fungi it follows ADH type and organism genera. The evolutionary pattern of this gene family can be explained by the birth and death model. Theoretical functional divergence studies conducted in the three previously cited groups of organisms indicated the sites that probably are being submitted to processes involving the emergence of functional novelties after gene duplication. The largest numbers of sites of divergent amino acids were found in the second zinc binding region, the monomer interacting segment, and the active site. Seventeen models of ADH tridimensional structure in plants from four botanical families were built by Comparative Molecular Modeling. The functionally divergent residues were located in the modeled structures and electrostatic and pI (isoelectric point) differences found

    Molecular evolution and structural analyses of proteins involved in metabolic pathways of volatile organic compounds in Petunia hybrida (Solanaceae)

    Get PDF
    The association between plants and their pollinators is essential for increasing the diversity in angiosperms. Morphological and physiological traits, mainly floral scent, can influence the pollination dynamics and select pollinators for each plant species. In this work, we studied two proteins involved in producing volatile organic compounds in plants, conyferyl alcohol acyltransferase (CFAT) and benzoyl-CoA:benzyl alcohol/phenyl ethanol benzoyl transferase (BPBT) genes. We aimed to understand these proteins with respect to evolutionary and structural aspects and functions in Solanaceae using phylogenetic methods and comparative molecular modeling. We used Bayesian inference to describe the proteins’ evolutionary history using Petunia x hybrida as a query to search for homologs in the Solanaceae family. Theoretical 3D models were obtained for both proteins using Panicum virgatum as a template. The phylogenetic tree included several different enzymes with diverse biological roles in Solanaceae, displaying the transferase domain. We identified only one sequence of CFAT in the databases, which belongs to Petunia x hybrida, and found several BPBT sequences from the genera Nicotiana, Solanum, and Capsicum. The 3D structures of CFAT and BPBT have two different domains, and we have identified the amino acid residues essential for the enzymatic activity and interaction with substrates

    Evolutionary and structural aspects of Solanaceae RNases T2

    Get PDF
    Plant RNases T2 are involved in several physiological and developmental processes, including inorganic phosphate starvation, senescence, wounding, defense against pathogens, and the self-incompatibility system. Solanaceae RNases form three main clades, one composed exclusively of S-RNases and two that include S-like RNases. We identified several positively selected amino acids located in highly flexible regions of these molecules, mainly close to the B1 and B2 substrate-binding sites in S-like RNases and the hypervariable regions of S-RNases. These differences between S- and S-like RNases in the flexibility of amino acids in substrate-binding regions are essential to understand the RNA-binding process. For example, in the S-like RNase NT, two positively selected amino acid residues (Tyr156 and Asn134) are located at the most flexible sites on the molecular surface. RNase NT is induced in response to tobacco mosaic virus infection; these sites may thus be regions of interaction with pathogen proteins or viral RNA. Differential selective pressures acting on plant ribonucleases have increased amino acid variability and, consequently, structural differences within and among S-like RNases and S-RNases that seem to be essential for these proteins play different functions

    Cestode strobilation: prediction of developmental genes and pathways

    Get PDF
    Background: Cestoda is a class of endoparasitic worms in the flatworm phylum (Platyhelminthes). During the course of their evolution cestodes have evolved some interesting aspects, such as their increased reproductive capacity. In this sense, they have serial repetition of their reproductive organs in the adult stage, which is often associated with external segmentation in a developmental process called strobilation. However, the molecular basis of strobilation is poorly understood. To assess this issue, an evolutionary comparative study among strobilated and non-strobilated flatworm species was conducted to identify genes and proteins related to the strobilation process. Results: We compared the genomic content of 10 parasitic platyhelminth species; five from cestode species, representing strobilated parasitic platyhelminths, and five from trematode species, representing non-strobilated parasitic platyhelminths. This dataset was used to identify 1813 genes with orthologues that are present in all cestode (strobilated) species, but absent from at least one trematode (non-strobilated) species. Development- related genes, along with genes of unknown function (UF), were then selected based on their transcriptional profiles, resulting in a total of 34 genes that were differentially expressed between the larval (pre-strobilation) and adult (strobilated) stages in at least one cestode species. These 34 genes were then assumed to be strobilation related; they included 12 encoding proteins of known function, with 6 related to the Wnt, TGF-β/BMP, or G-protein coupled receptor signaling pathways; and 22 encoding UF proteins. In order to assign function to at least some of the UF genes/proteins, a global gene co-expression analysis was performed for the cestode species Echinococcus multilocularis. This resulted in eight UF genes/proteins being predicted as related to developmental, reproductive, vesicle transport, or signaling processes. Conclusions: Overall, the described in silico data provided evidence of the involvement of 34 genes/proteins and at least 3 developmental pathways in the cestode strobilation process. These results highlight on the molecular mechanisms and evolution of the cestode strobilation process, and point to several interesting proteins as potential developmental markers and/or targets for the development of novel antihelminthic drugs

    Predominance of the SARS-CoV-2 lineage P.1 and its sublineage P.1.2 in patients from the metropolitan region of Porto Alegre, southern Brazil in March 2021

    Get PDF
    Almost a year after the COVID-19 pandemic had begun, new lineages (B.1.1.7, B.1.351, P.1, and B.1.617.2) associated with enhanced transmissibility, immunity evasion, and mortality were identified in the United Kingdom, South Africa, and Brazil. The previous most prevalent lineages in the state of Rio Grande do Sul (RS, Southern Brazil), B.1.1.28 and B.1.1.33, were rapidly replaced by P.1 and P.2, two B.1.1.28-derived lineages harboring the E484K mutation. To perform a genomic characterization from the metropolitan region of Porto Alegre, we sequenced viral samples to: (i) identify the prevalence of SARS-CoV-2 lineages in the region, the state, and bordering countries/regions; (ii) characterize the mutation spectra; (iii) hypothesize viral dispersal routes by using phylogenetic and phylogeographic approaches. We found that 96.4% of the samples belonged to the P.1 lineage and approximately 20% of them were assigned as the novel P.1.2, a P.1-derived sublineage harboring signature substitutions recently described in other Brazilian states and foreign countries. Moreover, sequences from this study were allocated in distinct branches of the P.1 phylogeny, suggesting multiple introductions in RS and placing this state as a potential diffusion core of P.1-derived clades and the emergence of P.1.2. It is uncertain whether the emergence of P.1.2 and other P.1 clades is related to clinical or epidemiological consequences. However, the clear signs of molecular diversity from the recently introduced P.1 warrant further genomic surveillance

    Genomic epidemiology of SARS-CoV-2 in Esteio, Rio Grande do Sul, Brazil

    Get PDF
    Background: Brazil is the third country most affected by Coronavirus disease-2019 (COVID-19), but viral evolution in municipality resolution is still poorly understood in Brazil and it is crucial to understand the epidemiology of viral spread. We aimed to track molecular evolution and spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Esteio (Southern Brazil) using phylogenetics and phylodynamics inferences from 21 new genomes in global and regional context. Importantly, the case fatality rate (CFR) in Esteio (3.26%) is slightly higher compared to the Rio Grande do Sul (RS) state (2.56%) and the entire Brazil (2.74%). Results: We provided a comprehensive view of mutations from a representative sampling from May to October 2020, highlighting two frequent mutations in spike glycoprotein (D614G and V1176F), an emergent mutation (E484K) in spike Receptor Binding Domain (RBD) characteristic of the B.1.351 and P.1 lineages, and the adjacent replacement of 2 amino acids in Nucleocapsid phosphoprotein (R203K and G204R). E484K was found in two genomes from mid-October, which is the earliest description of this mutation in Southern Brazil. Lineages containing this substitution must be subject of intense surveillance due to its association with immune evasion. We also found two epidemiologicallyrelated clusters, including one from patients of the same neighborhood. Phylogenetics and phylodynamics analysis demonstrates multiple introductions of the Brazilian most prevalent lineages (B.1.1.33 and B.1.1.248) and the establishment of Brazilian lineages ignited from the Southeast to other Brazilian regions. Conclusions: Our data show the value of correlating clinical, epidemiological and genomic information for the understanding of viral evolution and its spatial distribution over time. This is of paramount importance to better inform policy making strategies to fight COVID-19

    Isotopic measurements in water vapor, precipitation, and seawater during EUREC4^4A

    Get PDF
    n early 2020, an international team set out to investigate trade-wind cumulus clouds and their coupling to the large-scale circulation through the field campaign EUREC4^4A: ElUcidating the RolE of Clouds-Circulation Coupling in ClimAte. Focused on the western tropical Atlantic near Barbados, EUREC4^4A deployed a number of innovative observational strategies, including a large network of water isotopic measurements collectively known as EUREC4^4A-iso, to study the tropical shallow convective environment. The goal of the isotopic measurements was to elucidate processes that regulate the hydroclimate state – for example, by identifying moisture sources, quantifying mixing between atmospheric layers, characterizing the microphysics that influence the formation and persistence of clouds and precipitation, and providing an extra constraint in the evaluation of numerical simulations. During the field experiment, researchers deployed seven water vapor isotopic analyzers on two aircraft, on three ships, and at the Barbados Cloud Observatory (BCO). Precipitation was collected for isotopic analysis at the BCO and from aboard four ships. In addition, three ships collected seawater for isotopic analysis. All told, the in situ data span the period 5 January–22 February 2020 and cover the approximate area 6 to 16° N and 50 to 60° W, with water vapor isotope ratios measured from a few meters above sea level to the mid-free troposphere and seawater samples spanning the ocean surface to several kilometers depth. This paper describes the full EUREC4^4A isotopic in situ data collection – providing extensive information about sampling strategies and data uncertainties – and also guides readers to complementary remotely sensed water vapor isotope ratios. All field data have been made publicly available even if they are affected by known biases, as is the case for high-altitude aircraft measurements, one of the two BCO ground-based water vapor time series, and select rain and seawater samples from the ships. Publication of these data reflects a desire to promote dialogue around improving water isotope measurement strategies for the future. The remaining, high-quality data create unprecedented opportunities to close water isotopic budgets and evaluate water fluxes and their influence on cloudiness in the trade-wind environment. The full list of dataset DOIs and notes on data quality flags are provided in Table 3 of Sect. 5 (“Data availability”)

    Evidence of a Causal Association Between Insulinemia and Endometrial Cancer: A Mendelian Randomization Analysis.

    Get PDF
    BACKGROUND: Insulinemia and type 2 diabetes (T2D) have been associated with endometrial cancer risk in numerous observational studies. However, the causality of these associations is uncertain. Here we use a Mendelian randomization (MR) approach to assess whether insulinemia and T2D are causally associated with endometrial cancer. METHODS: We used single nucleotide polymorphisms (SNPs) associated with T2D (49 variants), fasting glucose (36 variants), fasting insulin (18 variants), early insulin secretion (17 variants), and body mass index (BMI) (32 variants) as instrumental variables in MR analyses. We calculated MR estimates for each risk factor with endometrial cancer using an inverse-variance weighted method with SNP-endometrial cancer associations from 1287 case patients and 8273 control participants. RESULTS: Genetically predicted higher fasting insulin levels were associated with greater risk of endometrial cancer (odds ratio [OR] per standard deviation = 2.34, 95% confidence internal [CI] = 1.06 to 5.14, P = .03). Consistently, genetically predicted higher 30-minute postchallenge insulin levels were also associated with endometrial cancer risk (OR = 1.40, 95% CI = 1.12 to 1.76, P = .003). We observed no associations between genetic risk of type 2 diabetes (OR = 0.91, 95% CI = 0.79 to 1.04, P = .16) or higher fasting glucose (OR = 1.00, 95% CI = 0.67 to 1.50, P = .99) and endometrial cancer. In contrast, endometrial cancer risk was higher in individuals with genetically predicted higher BMI (OR = 3.86, 95% CI = 2.24 to 6.64, P = 1.2x10(-6)). CONCLUSION: This study provides evidence to support a causal association of higher insulin levels, independently of BMI, with endometrial cancer risk.This study was supported by MRC grant MC_UU_12015/1 and by the Innovative Medicines Initiative Joint Undertaking under EMIF grant agreement n° 115372 (contributions from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies). ANECS recruitment was supported by project grants from the National Health and Medical Research Council of Australia (ID#339435), The Cancer Council Queensland (ID#4196615) and Cancer Council Tasmania (ID#403031 and ID#457636). SEARCH recruitment was funded by a programme grant from Cancer Research UK [C490/A10124]. Case genotyping was supported by the National Health and Medical Research Council (ID#552402). Control data was generated by the Wellcome Trust Case Control Consortium (WTCCC), and a full list of the investigators who contributed to the generation of the data is available from the WTCCC website. We acknowledge use of DNA from the British 1958 Birth Cohort collection, funded by the Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. Funding for this project was provided by the Wellcome Trust under award 085475. Recruitment of the QIMR controls was supported by the National Health and Medical Research Council of Australia (NHMRC). The University of Newcastle, the Gladys M Brawn Senior Research Fellowship scheme, The Vincent Fairfax Family Foundation, the Hunter Medical Research Institute and the Hunter Area Pathology Service all contributed towards the costs of establishing the Hunter Community Study. K.T.N. was supported by the Gates Cambridge Trust. R.K.S. is supported by the Wellcome Trust (grant number WT098498). A.B.S. is supported by the National Health and Medical Research Council (NHMRC) Fellowship Scheme. D.F.E. is a Principal Research Fellow of Cancer Research UK. A.M.D is supported by the Joseph Mitchell Trust.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/jnci/djv17

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye
    • …
    corecore