17 research outputs found

    Re-structuring of marine communities exposed to environmental change

    Get PDF
    Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research

    Re-Structuring of Marine Communities Exposed to Environmental Change: A Global Study on the Interactive Effects of Species and Functional Richness

    Get PDF
    Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research

    Re-structuring of marine communities exposed to environmental change: a global study on the interactive effects of species and functional richness

    Get PDF
    Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research.Mercator Stiftung via GAMEPostprint4,41

    Progressive ductile shearing during till accretion within the deforming bed of a palaeo-ice stream

    Get PDF
    This paper presents the results of a detailed microstructural study of a thick till formed beneath the Weichselian (Devensian) Odra palaeo-ice stream, west of Åšroda Wielkopolska, Poland. This SE-flowing ice stream was one of a number of corridors of faster flowing ice which drained the Scandinavian Ice Sheet in the Baltic region. Macroscopically, the massive, laterally extensive till which formed the bed of this ice stream lacks any obvious evidence of glaciotectonism (thrusting, folding). However, microscale analysis reveals that bed deformation was dominated by foliation development, recording progressive ductile shearing within a subhorizontal subglacial shear zone. Five successive generations of clast microfabric (S1 to S5) have been identified defining a set of up-ice and down-ice dipping Riedel shears, as well as a subhorizontal shear foliation coplanar to the ice-bed interface. Cross-cutting relationships between the shear fabrics record temporal changes in the style of deformation during this progressive shear event. Kinematic indicators (S-C and ECC-type fabrics) within the till indicate a consistent SE-directed shear sense, in agreement with the regional ice flow pattern. A model of bed deformation involving incremental progressive simple shear during till accretion is proposed. The relative age of this deformation was diachronous becoming progressively younger upwards, compatible with subglacial shearing having accompanied till accretion at the top of the deforming bed. Variation in the relative intensity of the microfabrics records changes in the magnitude of the cumulative strain imposed on the till and the degree of coupling between the ice and underlying bed during fast ice flow

    The relative magnitude of the effects of biological and physical settlement cues for cypris larvae of the acorn barnacle,Semibalanus balanoidesL.

    No full text
    Barnacle cypris larvae respond to many cues when selecting a settlement site. The settlement of over a million larvae on tiles of different textures, orientations and densities of incumbent settlers was measured on the rocky intertidal at Great Cumbrae, Scotland. Half of the tiles were replaced every tide whereas the others simultaneously accumulated settlers. Factor effects varied on each tide, and converged in the accumulating deployment. Increasing incumbent density led to net loss of settlement, which was less probable on the textures on which fastest settlment occurred ('very fine'), and more probable on those on which settlement was slowest ('smooth'). More settlement occurred on down-facing orientations during daylight and vice versa. Cue ranks were non-linear, so a path analysis model quantified the relative influence of each factor. Gregariousness was the most influential cue measured, although unmeasured factors had greater effects, highlighting the complexity of settlement influences in this species

    Techniques for the quantification of biofouling

    No full text
    For this chapter, we have collated from the authors in this book approaches and techniques for the quantification and qualification of biofouling and have presented most of it in referenced tabular form to permit easy access to the information (Table 22.1). There are also two more thorough sections neither of which has been published before: one on the sampling of hulls of large vessels and another which details a broadly applicable advanced stereo logical techniquefor the quantification of fouling. The collection is unlikely to be fully comprehensive, but we have aimed to give the reader techniques for quantification of different levels of the biofouling community, from biofilm to macroorganisms, and from single species to the whole community. The techniques are for use in the office, laboratory or the field and range from cheap to costly. All of these techniques have proven their usefulness and with this chapter we would liketo improve the exchange of approaches to biofouling quantification between the different disciplines. For this reason, the techniques come from across the basic and applied sciences in industry, biology and medicine
    corecore