1,159 research outputs found
Intraspecfic variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp petraea
Atmospheric temperature is a key factor in determining the distribution of a plant species. Alongside this, plant populations growing at the margin of their range may exhibit traits that indicate genetic differentiation and adaptation to their local abiotic environment. We investigated whether geographically separated marginal populations of Arabidopsis lyrata ssp. petraea have distinct metabolic phenotypes associated with exposure to cold temperatures. Seeds of A. petraea were obtained from populations along a latitudinal gradient, namely Wales, Sweden and Iceland and grown in a controlled cabinet environment. Mannose, glucose, fructose, sucrose and raffinose concentrations were different between cold treatments and populations, especially in the Welsh population, but polyhydric alcohol concentrations were not. The free amino acid compositions were population specific, with fold differences in most amino acids, especially in the Icelandic populations, with gross changes in amino acids, particularly those associated with glutamine metabolism. Metabolic fingerprints and profiles were obtained. Principal component analysis (PCA) of metabolite fingerprints revealed metabolic characteristic phenotypes for each population and temperature. It is suggested that amino acids and carbohydrates were responsible for discriminating populations within the PCA. Metabolite fingerprinting and profiling has proved to be sufficiently sensitive to identify metabolic differences between plant populations at different atmospheric temperatures. These findings show that there is significant natural variation in cold metabolism among populations of A. l. petraea which may signify plant adaptation to local climates
Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorous predation
Modification of essential bacterial peptidoglycan (PG) containing cell walls can lead to antibiotic resistance, for example β-lactam resistance by L,D-transpeptidase activities. Predatory Bdellovibrio bacteriovorus are naturally antibacterial and combat infections by traversing, modifying and finally destroying walls of Gram-negative prey bacteria, modifying their own PG as they grow inside prey. Historically, these multi-enzymatic processes on two similar PG walls have proved challenging to elucidate. Here, with a PG labelling approach utilizing timed pulses of multiple fluorescent D-amino acids (FDAAs), we illuminate dynamic changes that predator and prey walls go through during the different phases of bacteria:bacteria invasion. We show formation of a reinforced circular port-hole in the prey wall; L,D-transpeptidaseBd mediated D-amino acid modifications strengthening prey PG during Bdellovibrio invasion and a zonal mode of predator-elongation. This process is followed by unconventional, multi-point and synchronous septation of the intracellular Bdellovibrio, accommodating odd- and even-numbered progeny formation by non-binary division
Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts
The peptidoglycan wall, located in the periplasm between the inner and outer membranes of the cell envelope in Gram-negative bacteria, maintains cell shape and endows osmotic robustness. Predatory Bdellovibrio bacteria invade the periplasm of other bacterial prey cells, usually crossing the peptidoglycan layer, forming transient structures called bdelloplasts within which the predators replicate. Prey peptidoglycan remains intact for several hours, but is modified and then degraded by predators escaping. Here we show predation is altered by deleting two Bdellovibrio N-acetylglucosamine (GlcNAc) deacetylases, one of which we show to have a unique two domain structure with a novel regulatory-”plug”. Deleting the deacetylases limits peptidoglycan degradation and rounded prey cell “ghosts” persist after mutant-predator exit. Mutant predators can replicate unusually in the periplasmic region between the peptidoglycan wall and the outer membrane rather than between wall and inner-membrane, yet still obtain nutrients from the prey cytoplasm. Deleting two further genes encoding DacB/PBP4 family proteins, known to decrosslink and round prey peptidoglycan, results in a quadruple mutant Bdellovibrio which leaves prey-shaped ghosts upon predation. The resultant bacterial ghosts contain cytoplasmic membrane within bacteria-shaped peptidoglycan surrounded by outer membrane material which could have promise as “bacterial skeletons” for housing artificial chromosomes
Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes
Phenazines are natural bacterial antibiotics that can protect crops from disease. However, for most crops it is unknown which producers and specific phenazines are ecologically relevant, and whether phenazine biodegradation can counter their effects. To better understand their ecology, we developed and environmentally-validated a quantitative metagenomic approach to mine for phenazine biosynthesis and biodegradation genes, applying it to >800 soil and plant-associated shotgun-metagenomes. We discover novel producer-crop associations and demonstrate that phenazine biosynthesis is prevalent across habitats and preferentially enriched in rhizospheres, whereas biodegrading bacteria are rare. We validate an association between maize and Dyella japonica, a putative producer abundant in crop microbiomes. D. japonica upregulates phenazine biosynthesis during phosphate limitation and robustly colonizes maize seedling roots. This work provides a global picture of phenazines in natural environments and highlights plant-microbe associations of agricultural potential. Our metagenomic approach may be extended to other metabolites and functional traits in diverse ecosystems
Abstracts of papers presented at an international workshop on management of soilborne pathogens sponsored by the United States-Israel binational agricultural research and development fund (bard): March 1-5,1998 Ramat Rachel, Jerusalem, Israel
Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation
Abstract C-Repeat Binding Factors (CBFs) are DNAbinding
transcriptional activators of gene pathways imparting
freezing tolerance. Poaceae contain three CBF subfamilies,
two of which, HvCBF3/CBFIII and HvCBF4/CBFIV,
are unique to this taxon. To gain mechanistic insight into
HvCBF4/CBFIV CBFs we overexpressed Hv-CBF2A in
spring barley (Hordeum vulgare) cultivar ‘Golden Promise’.
The Hv-CBF2A overexpressing lines exhibited stunted
growth, poor yield, and greater freezing tolerance compared
to non-transformed ‘Golden Promise’. Differences in
freezing tolerance were apparent only upon cold acclimation.
During cold acclimation freezing tolerance of the
Hv-CBF2A overexpressing lines increased more rapidly
than that of ‘Golden Promise’ and paralleled the freezing
tolerance of the winter hardy barley ‘Dicktoo’. Transcript
levels of candidate CBF target genes, COR14B and DHN5
were increased in the overexpressor lines at warm temperatures,
and at cold temperatures they accumulated to much
higher levels in the Hv-CBF2A overexpressors than in
‘Golden Promise’. Hv-CBF2A overexpression also
increased transcript levels of other CBF genes at FROST
RESISTANCE-H2-H2 (FR-H2) possessing CRT/DRE sites
in their upstream regions, the most notable of which was
CBF12. CBF12 transcript levels exhibited a relatively constant
incremental increase above levels in ‘Golden Promise’
both at warm and cold. These data indicate that Hv-CBF2A
activates target genes at warm temperatures and that transcript
accumulation for some of these targets is greatly
enhanced by cold temperatures
Identifying core features of adaptive metabolic mechanisms for chronic heat stress attenuation contributing to systems robustness
The contribution of metabolism to heat stress may play a significant role in defining robustness and recovery of systems; either by providing the energy and metabolites required for cellular homeostasis, or through the generation of protective osmolytes. However, the mechanisms by which heat stress attenuation could be adapted through metabolic processes as a stabilizing strategy against thermal stress are still largely unclear. We address this issue through metabolomic and transcriptomic profiles for populations along a thermal cline where two seagrass species, Zostera marina and Zostera noltii, were found in close proximity. Significant changes captured by these profile comparisons could be detected, with a larger response magnitude observed in northern populations to heat stress. Sucrose, fructose, and myo-inositol were identified to be the most responsive of the 29 analyzed organic metabolites. Many key enzymes in the Calvin cycle, glycolysis and pentose phosphate pathways also showed significant differential expression. The reported comparison suggests that adaptive mechanisms are involved through metabolic pathways to dampen the impacts of heat stress, and interactions between the metabolome and proteome should be further investigated in systems biology to understand robust design features against abiotic stress
Interaction of Temperature and Light in the Development of Freezing Tolerance in Plants
Abstract Freezing tolerance is the result of a wide range
of physical and biochemical processes, such as the induction
of antifreeze proteins, changes in membrane composition,
the accumulation of osmoprotectants, and changes
in the redox status, which allow plants to function at low
temperatures. Even in frost-tolerant species, a certain period
of growth at low but nonfreezing temperatures, known
as frost or cold hardening, is required for the development
of a high level of frost hardiness. It has long been known
that frost hardening at low temperature under low light
intensity is much less effective than under normal light
conditions; it has also been shown that elevated light
intensity at normal temperatures may partly replace the
cold-hardening period. Earlier results indicated that cold
acclimation reflects a response to a chloroplastic redox
signal while the effects of excitation pressure extend
beyond photosynthetic acclimation, influencing plant
morphology and the expression of certain nuclear genes
involved in cold acclimation. Recent results have shown
that not only are parameters closely linked to the photosynthetic
electron transport processes affected by light
during hardening at low temperature, but light may also
have an influence on the expression level of several other
cold-related genes; several cold-acclimation processes can
function efficiently only in the presence of light. The
present review provides an overview of mechanisms that
may explain how light improves the freezing tolerance of
plants during the cold-hardening period
A proteomic analysis of Psychrobacter articus 273-4 adaptation to low temperature and salinity using a 2-D liquid mapping approach
Psychrobacter 273-4 was isolated from a 20 000–40 000–year-old Siberian permafrost core, which is characterized by low temperature, low water activity, and high salinity. To explore how 273-4 survives in the permafrost environment, proteins in four 273-4 samples cultured at 4 and 22°C in media with and without 5% 14sodium chloride were profiled and comparatively studied using 2-D HPLC and MS. The method used herein involved fractionation via a pH gradient using chromatofocusing followed by nonporous silica 14(NPS) RP-HPLC and on-line electrospray mass mapping. It was observed that 33 14proteins were involved in the adaptation to low temperature in the cells grown in the nonsaline media while there were only 14 proteins involved in the saline media. There were 45 14proteins observed differentially expressed in response to salt at 22°C while there were 22 14proteins at 4°C. In addition, 5% 14NaCl and 4°C showed a combination effect on protein expression. A total of 56 14proteins involved in the adaptation to low temperature and salt were identified using MS and database searching. The differentially expressed proteins were classified into different functional categories where the response of the regulation system to stress appears to be very elaborate. The evidence shows that the adaptation of 273-4 is based primarily on the control of translation and transcription, the synthesis of proteins (chaperones) to facilitate RNA and protein folding, and the regulation of metabolic pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55939/1/467_ftp.pd
Purification and Properties of Arabidopsis thaliana COR (Cold-Regulated) Gene Polypeptides COR15am and COR6.6 Expressed in Escherichia coli
- …
