6,260 research outputs found

    Lentivirus-mediated transgene delivery to the hippocampus reveals sub-field specific differences in expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the adult hippocampus, the granule cell layer of the dentate gyrus is a heterogeneous structure formed by neurons of different ages, morphologies and electrophysiological properties. Retroviral vectors have been extensively used to transduce cells of the granule cell layer and study their inherent properties in an intact brain environment. In addition, lentivirus-based vectors have been used to deliver transgenes to replicative and non-replicative cells as well, such as post mitotic neurons of the CNS. However, only few studies have been dedicated to address the applicability of these widespread used vectors to hippocampal cells in vivo. Therefore, the aim of this study was to extensively characterize the cell types that are effectively transduced in vivo by VSVg-pseudotyped lentivirus-based vectors in the hippocampus dentate gyrus.</p> <p>Results</p> <p>In the present study we used Vesicular Stomatitis Virus G glycoprotein-pseudotyped lentivirual vectors to express EGFP from three different promoters in the mouse hippocampus. In contrast to lentiviral transduction of pyramidal cells in CA1, we identified sub-region specific differences in transgene expression in the granule cell layer of the dentate gyrus. Furthermore, we characterized the cell types transduced by these lentiviral vectors, showing that they target primarily neuronal progenitor cells and immature neurons present in the sub-granular zone and more immature layers of the granule cell layer.</p> <p>Conclusion</p> <p>Our observations suggest the existence of intrinsic differences in the permissiveness to lentiviral transduction among various hippocampal cell types. In particular, we show for the first time that mature neurons of the granule cell layer do not express lentivirus-delivered transgenes, despite successful expression in other hippocampal cell types. Therefore, amongst hippocampal granule cells, only adult-generated neurons are target for lentivirus-mediated transgene delivery. These properties make lentiviral vectors excellent systems for overexpression or knockdown of genes in neuronal progenitor cells, immature neurons and adult-generated neurons of the mouse hippocampus in vivo.</p

    Environmental predictors of bovine Eimeria infection in western Kenya

    Get PDF
    Eimeriosis is caused by a protozoan infection affecting most domestic animal species. Outbreaks in cattle are associated with various environmental factors in temperate climates but limited work has been done in tropical settings. The objective of this work was to determine the prevalence and environmental factors associated with bovine Eimeria spp. infection in a mixed farming area of western Kenya. A total of 983 cattle were sampled from 226 cattle-keeping households. Faecal samples were collected directly from the rectum via digital extraction and analysed for the presence of Eimeria spp. infection using the MacMaster technique. Individual and household level predictors of infection were explored using mixed effects logistic regression. The prevalence of individual animal Eimeria infection was 32.8% (95% CI 29.9--35.9). A positive linear relationship was found between risk of Eimeria infection and increasing temperature (ORþinspace=þinspace1.4, 95% CI 1.06--1.86) and distance to areas at risk of flooding (ORþinspace=þinspace1.49, 95% CI 1.17--1.91). There was weak evidence of non-linear relationship between Eimeria infection and the proportion of the area around a household that was classified as swamp (ORþinspace=þinspace1.12, 95% CI 0.87--1.44; OR (quadratic term)þinspace=þinspace0.85, 95% CI 0.73--1.00), and the sand content of the soil (ORþinspace=þinspace1.18, 95% CI 0.91--1.53; OR (quadratic term)þinspace=þinspace1.1, 95% CI 0.99--1.23). The risk of animal Eimeria spp. infection is influenced by a number of climatic and soil-associated conditions

    Applications of Direct Injection Soft Chemical Ionisation-Mass Spectrometry for the Detection of Pre-blast Smokeless Powder Organic Additives

    Get PDF
    Analysis of smokeless powders is of interest from forensics and security perspectives. This article reports the detection of smokeless powder organic additives (in their pre-detonation condition), namely the stabiliser diphenylamine and its derivatives 2-nitrodiphenylamine and 4-nitrodiphenylamine, and the additives (used both as stabilisers and plasticisers) methyl centralite and ethyl centralite, by means of swab sampling followed by thermal desorption and direct injection soft chemical ionisation-mass spectrometry. Investigations on the product ions resulting from the reactions of the reagent ions H3O+ and O2+ with additives as a function of reduced electric field are reported. The method was comprehensively evaluated in terms of linearity, sensitivity and precision. For H3O+, the limits of detection (LoD) are in the range of 41-88 pg of additive, for which the accuracy varied between 1.5 and 3.2%, precision varied between 3.7 and 7.3% and linearity showed R20.9991. For O2+, LoD are in the range of 72 to 1.4 ng, with an accuracy of between 2.8 and 4.9% and a precision between 4.5 and 8.6% and R20.9914. The validated methodology was applied to the analysis of commercial pre-blast gun powders from different manufacturers.(VLID)4826148Accepted versio

    Sequencing strategies and characterization of 721 vervet monkey genomes for future genetic analyses of medically relevant traits

    Get PDF
    Background We report here the first genome-wide high-resolution polymorphism resource for non-human primate (NHP) association and linkage studies, constructed for the Caribbean-origin vervet monkey, or African green monkey (Chlorocebus aethiops sabaeus), one of the most widely used NHPs in biomedical research. We generated this resource by whole genome sequencing (WGS) of monkeys from the Vervet Research Colony (VRC), an NIH-supported research resource for which extensive phenotypic data are available. Results We identified genome-wide single nucleotide polymorphisms (SNPs) by WGS of 721 members of an extended pedigree from the VRC. From high-depth WGS data we identified more than 4 million polymorphic unequivocal segregating sites; by pruning these SNPs based on heterozygosity, quality control filters, and the degree of linkage disequilibrium (LD) between SNPs, we constructed genome-wide panels suitable for genetic association (about 500,000 SNPs) and linkage analysis (about 150,000 SNPs). To further enhance the utility of these resources for linkage analysis, we used a further pruned subset of the linkage panel to generate multipoint identity by descent matrices. Conclusions The genetic and phenotypic resources now available for the VRC and other Caribbean-origin vervets enable their use for genetic investigation of traits relevant to human diseases

    Early Detection of Erlotinib Treatment Response in NSCLC by 3′-Deoxy-3′-[18F]-Fluoro-L-Thymidine ([18F]FLT) Positron Emission Tomography (PET)

    Get PDF
    Background: Inhibition of the epidermal growth factor receptor (EGFR) has shown clinical success in patients with advanced non-small cell lung cancer (NSCLC). Somatic mutations of EGFR were found in lung adenocarcinoma that lead to exquisite dependency on EGFR signaling; thus patients with EGFR-mutant tumors are at high chance of response to EGFR inhibitors. However, imaging approaches affording early identification of tumor response in EGFR-dependent carcinomas have so far been lacking. Methodology/Principal Findings: We performed a systematic comparison of 3′-Deoxy-3′-[18F^{18}F]-fluoro-L-thymidine ([18F^{18}F]FLT) and 2-[18F^{18}F]-fluoro-2-deoxy-D-glucose ([18F^{18}F]FDG) positron emission tomography (PET) for their potential to identify response to EGFR inhibitors in a model of EGFR-dependent lung cancer early after treatment initiation. While erlotinib-sensitive tumors exhibited a striking and reproducible decrease in [18F^{18}F]FLT uptake after only two days of treatment, [18F^{18}F]FDG PET based imaging revealed no consistent reduction in tumor glucose uptake. In sensitive tumors, a decrease in [18F^{18}F]FLT PET but not [18F^{18}F]FDG PET uptake correlated with cell cycle arrest and induction of apoptosis. The reduction in [18F^{18}F]FLT PET signal at day 2 translated into dramatic tumor shrinkage four days later. Furthermore, the specificity of our results is confirmed by the complete lack of [18F^{18}F]FLT PET response of tumors expressing the T790M erlotinib resistance mutation of EGFR. Conclusions: [18F^{18}F]FLT PET enables robust identification of erlotinib response in EGFR-dependent tumors at a very early stage. [18F^{18}F]FLT PET imaging may represent an appropriate method for early prediction of response to EGFR TKI treatment in patients with NSCLC

    Quantifying neutralising antibody responses against SARS-CoV-2 in dried blood spots (DBS) and paired sera

    Get PDF
    The ongoing SARS-CoV-2 pandemic was initially managed by non-pharmaceutical interventions such as diagnostic testing, isolation of positive cases, physical distancing and lockdowns. The advent of vaccines has provided crucial protection against SARS-CoV-2. Neutralising antibody (nAb) responses are a key correlate of protection, and therefore measuring nAb responses is essential for monitoring vaccine efficacy. Fingerstick dried blood spots (DBS) are ideal for use in large-scale sero-surveillance because they are inexpensive, offer the option of self-collection and can be transported and stored at ambient temperatures. Such advantages also make DBS appealing to use in resource-limited settings and in potential future pandemics. In this study, nAb responses in sera, venous blood and fingerstick blood stored on filter paper were measured. Samples were collected from SARS-CoV-2 acutely infected individuals, SARS-CoV-2 convalescent individuals and SARS-CoV-2 vaccinated individuals. Good agreement was observed between the nAb responses measured in eluted DBS and paired sera. Stability of nAb responses was also observed in sera stored on filter paper at room temperature for 28 days. Overall, this study provides support for the use of filter paper as a viable sample collection method to study nAb responses

    Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized

    Get PDF
    Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge based potentials based on pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state -- a necessary component of these potentials -- is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities reference ratio distributions deriving from the application of the reference ratio method. This new view is not only of theoretical relevance, but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures

    Genetic variation and gene expression across multiple tissues and developmental stages in a non-human primate

    Get PDF
    By analyzing multitissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalog of expression quantitative trait loci (eQTLs) in a nonhuman primate model. This catalog contains more genome-wide significant eQTLs per sample than comparable human resources and identifies sex- and age-related expression patterns. Findings include a master regulatory locus that likely has a role in immune function and a locus regulating hippocampal long noncoding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders
    corecore