29 research outputs found

    Hurdles and opportunities in implementing marine biosecurity systems in data-poor regions

    Get PDF
    Managing marine nonindigenous species (mNIS) is challenging, because marine environments are highly connected, allowing the dispersal of species across large spatial scales, including geopolitical borders. Cross-border inconsistencies in biosecurity management can promote the spread of mNIS across geopolitical borders, and incursions often go unnoticed or unreported. Collaborative surveillance programs can enhance the early detection of mNIS, when response may still be possible, and can foster capacity building around a common threat. Regional or international databases curated for mNIS can inform local monitoring programs and can foster real-time information exchange on mNIS of concern. When combined, local species reference libraries, publicly available mNIS databases, and predictive modeling can facilitate the development of biosecurity programs in regions lacking baseline data. Biosecurity programs should be practical, feasible, cost-effective, mainly focused on prevention and early detection, and be built on the collaboration and coordination of government, nongovernment organizations, stakeholders, and local citizens for a rapid response.This work resulted from a workshop organized at the King Abdul- lah University of Science and Technology and sponsored under the Support for Conferences and Workshops Program. We would like to thank the admin support of the Red Sea Research Cen- ter team, IT, and teachers and students from the KAUST schools who participated in some outreach activities. We thank Ana Bi- gio for the artwork presented in this article (figures 1–4). GS was supported by the European Social Fund, under project no 09.3.3- LMT-K-712, the “Development of Competences of Scientists, other Researchers and Students through Practical Research Activities” measure, grant agreement no. 09.3.3-LMT-K-712–19-0083

    Environment and shipping drive environmental DNA beta-diversity among commercial ports

    Get PDF
    The spread of nonindigenous species by shipping is a large and growing global problem that harms coastal ecosystems and economies and may blur coastal biogeographical patterns. This study coupled eukaryotic environmental DNA (eDNA) metabarcoding with dissimilarity regression to test the hypothesis that ship-borne species spread homogenizes port communities. We first collected and metabarcoded water samples from ports in Europe, Asia, Australia and the Americas. We then calculated community dissimilarities between port pairs and tested for effects of environmental dissimilarity, biogeographical region and four alternative measures of ship-borne species transport risk. We predicted that higher shipping between ports would decrease community dissimilarity, that the effect of shipping would be small compared to that of environment dissimilarity and shared biogeography, and that more complex shipping risk metrics (which account for ballast water and stepping-stone spread) would perform better. Consistent with our hypotheses, community dissimilarities increased significantly with environmental dissimilarity and, to a lesser extent, decreased with ship-borne species transport risks, particularly if the ports had similar environments and stepping-stone risks were considered. Unexpectedly, we found no clear effect of shared biogeography, and that risk metrics incorporating estimates of ballast discharge did not offer more explanatory power than simpler traffic-based risks. Overall, we found that shipping homogenizes eukaryotic communities between ports in predictable ways, which could inform improvements in invasive species policy and management. We demonstrated the usefulness of eDNA metabarcoding and dissimilarity regression for disentangling the drivers of large-scale biodiversity patterns. We conclude by outlining logistical considerations and recommendations for future studies using this approach.Fil: Andrés, Jose. Cornell University. Department Of Ecology And Evolutionary Biology;Fil: Czechowski, Paul. Cornell University. Department Of Ecology And Evolutionary Biology; . University of Otago; Nueva Zelanda. Helmholtz Institute for Metabolic, Obesity and Vascular Research; AlemaniaFil: Grey, Erin. University of Maine; Estados Unidos. Governors State University; Estados UnidosFil: Saebi, Mandana. University of Notre Dame; Estados UnidosFil: Andres, Kara. Cornell University. Department Of Ecology And Evolutionary Biology;Fil: Brown, Christopher. California State University Maritime Academy; Estados UnidosFil: Chawla, Nitesh. University of Notre Dame; Estados UnidosFil: Corbett, James J.. University of Delaware; Estados UnidosFil: Brys, Rein. Research Institute for Nature and Forest; BélgicaFil: Cassey, Phillip. University of Adelaide; AustraliaFil: Correa, Nancy. Ministerio de Defensa. Armada Argentina. Instituto Universitario Naval de la Ara. Escuela de Ciencias del Mar; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; ArgentinaFil: Deveney, Marty R.. South Australian Research And Development Institute; AustraliaFil: Egan, Scott P.. Rice University; Estados UnidosFil: Fisher, Joshua P.. United States Fish and Wildlife Service; Estados UnidosFil: vanden Hooff, Rian. Oregon Department of Environmental Quality; Estados UnidosFil: Knapp, Charles R.. Daniel P. Haerther Center for Conservation and Research; Estados UnidosFil: Leong, Sandric Chee Yew. National University of Singapore; SingapurFil: Neilson, Brian J.. State of Hawaii Division of Aquatic Resources; Estados UnidosFil: Paolucci, Esteban Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Pfrender, Michael E.. University of Notre Dame; Estados UnidosFil: Pochardt, Meredith R.. M. Rose Consulting; Estados UnidosFil: Prowse, Thomas A. A.. University of Adelaide; AustraliaFil: Rumrill, Steven S.. Oregon Department of Fish and Wildlife; Estados UnidosFil: Scianni, Chris. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto para el Estudio de la Biodiversidad de Invertebrados; Argentina. Marine Invasive Species Program; Estados UnidosFil: Sylvester, Francisco. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto para el Estudio de la Biodiversidad de Invertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Tamburri, Mario N.. University of Maryland; Estados UnidosFil: Therriault, Thomas W.. Pacific Biological Station; CanadåFil: Yeo, Darren C. J.. National University of Singapore; SingapurFil: Lodge, David M.. Cornell University. Department Of Ecology And Evolutionary Biology

    INVASIVESNET towards an International Association for Open Knowledge on Invasive Alien Species

    Get PDF
    In a world where invasive alien species (IAS) are recognised as one of the major threats to biodiversity, leading scientists from five continents have come together to propose the concept of developing an international association for open knowledge and open data on IAS—termed “INVASIVESNET”. This new association will facilitate greater understanding and improved management of invasive alien species (IAS) and biological invasions globally, by developing a sustainable network of networks for effective knowledge exchange. In addition to their inclusion in the CBD Strategic Plan for Biodiversity, the increasing ecological, social, cultural and economic impacts associated with IAS have driven the development of multiple legal instruments and policies. This increases the need for greater co-ordination, co-operation, and information exchange among scientists, management, the community of practice and the public. INVASIVESNET will be formed by linking new and existing networks of interested stakeholders including international and national expert working groups and initiatives, individual scientists, database managers, thematic open access journals, environmental agencies, practitioners, managers, industry, non-government organisations, citizens and educational bodies. The association will develop technical tools and cyberinfrastructure for the collection, management and dissemination of data and information on IAS; create an effective communication platform for global stakeholders; and promote coordination and collaboration through international meetings, workshops, education, training and outreach. To date, the sustainability of many strategic national and international initiatives on IAS have unfortunately been hampered by time-limited grants or funding cycles. Recognising that IAS initiatives need to be globally coordinated and ongoing, we aim to develop a sustainable knowledge sharing association to connect the outputs of IAS research and to inform the consequential management and societal challenges arising from IAS introductions. INVASIVESNET will provide a dynamic and enduring network of networks to ensure the continuity of connections among the IAS community of practice, science and management

    The National Early Warning Score and its subcomponents recorded within ±24 hours of emergency medical admission are poor predictors of hospital-acquired acute kidney injury

    Get PDF
    YesBackground: Hospital-acquired Acute Kidney Injury (H-AKI) is a common cause of avoidable morbidity and mortality. Aim: To determine if the patients’ vital signs data as defined by a National Early Warning Score (NEWS), can predict H-AKI following emergency admission to hospital. Methods: Analyses of emergency admissions to York hospital over 24-months with NEWS data. We report the area under the curve (AUC) for logistic regression models that used the index NEWS (model A0), plus age and sex (A1), plus subcomponents of NEWS (A2) and two-way interactions (A3). Likewise for maximum NEWS (models B0,B1,B2,B3). Results: 4.05% (1361/33608) of emergency admissions had H-AKI. Models using the index NEWS had the lower AUCs (0.59 to 0.68) than models using the maximum NEWS AUCs (0.75 to 0.77). The maximum NEWS model (B3) was more sensitivity than the index NEWS model (A0) (67.60% vs 19.84%) but identified twice as many cases as being at risk of H-AKI (9581 vs 4099) at a NEWS of 5. Conclusions: The index NEWS is a poor predictor of H-AKI. The maximum NEWS is a better predictor but seems unfeasible because it is only knowable in retrospect and is associated with a substantial increase in workload albeit with improved sensitivity.The Health Foundatio

    Seawater carbonate chemistry and fouling community structure and diversity

    No full text
    1.Increasing levels of CO2 in the atmosphere are affecting ocean chemistry, leading to increased acidification (i.e., decreased pH) and reductions in calcium carbonate saturation state. 2.Many species are likely to respond to acidification, but the direction and magnitude of these responses will be based on interspecific and ontogenetic variation in physiology and the relative importance of calcification. Differential responses to ocean acidification among species will likely result in important changes in community structure and diversity. 3.To characterize potential impacts of ocean acidification on community composition and structure, we examined the response of a marine fouling community to experimental CO2 enrichment in field-deployed flow-through mesocosm systems. 4.Acidification significantly altered community structure by altering the relative abundances of species and reduced community variability, resulting in more homogenous biofouling communities from one experimental tile to the next both among and within the acidified mesocosms. Mussel (Mytilus trossulus) recruitment was reduced by over 30% in the elevated CO2 treatment compared to the ambient treatment by the end of the experiment. Strong differences in mussel cover (up to 40% lower in acidified conditions) developed over the second half of the 10-week experiment. Acidification did not appear to affect mussel growth, as average mussel sizes were similar between treatments at the end of the experiment. Hydroid (Obelia dichotoma) cover was significantly reduced in the elevated CO2 treatment after eight weeks. Conversely, the percent cover of bryozoan colonies (Mebranipora membranacea) was higher under acidified conditions with differences becoming apparent after six weeks. Neither recruitment nor final size of barnacles (Balanus crenatus) was affected by acidification. By the end of the experiment, diversity was 41% lower in the acidified treatment relative to ambient conditions. 5.Overall, our findings support the general expectation that OA will simplify marine communities by acting on important ecological processes that ultimately determine community structure and diversity

    Data from: A new integrative framework for large-scale assessments of biodiversity and community dynamics, using littoral gastropods and crabs of British Columbia, Canada

    No full text
    Improving our understanding of species responses to environmental changes is an important contribution ecologists can make to facilitate effective management decisions. Novel synthetic approaches to assessing biodiversity and ecosystem integrity are needed, ideally including all species living in a community and the dynamics defining their ecological relationships. Here we present and apply an integrative approach that links high-throughput, multi-character taxonomy with community ecology. The overall purpose is to enable the coupling of biodiversity assessments with investigations into the nature of ecological interactions in a community-level data set. We collected 1,195 gastropods and crabs in British Columbia. First, the General mixed Yule-coalescent (GMYC) and the Poisson Tree Processes (PTP) methods for proposing primary species-hypotheses based on cox1 sequences were evaluated against an integrative taxonomic framework. We then used data on the geographic distribution of delineated species to test species co-occurrence patterns for non-randomness using community-wide and pairwise approaches. Results showed that PTP generally outperformed GMYC and thus constitutes a more effective option for producing species-hypotheses in community-level datasets. Non-random species co-occurrence patterns indicative of ecological relationships or habitat preferences were observed for grazer gastropods, whereas assemblages of opportunistic omnivorous gastropods and crabs appeared influenced by random processes. Species-pair associations were consistent with current ecological knowledge, thus suggesting that applying community assembly within a large taxonomical framework constitutes a valuable tool for assessing ecological interactions. Combining phylogenetic, morphological and co-occurrence data enabled an integrated view of communities, providing both a conceptual and pragmatic framework for biodiversity assessments and investigations into community dynamics

    Functional responses of a cosmopolitan invader demonstrate intraspecific variability in consumer-resource dynamics

    Get PDF
    Background Variability in the ecological impacts of invasive species across their geographical ranges may decrease the accuracy of risk assessments. Comparative functional response analysis can be used to estimate invasive consumer-resource dynamics, explain impact variability, and thus potentially inform impact predictions. The European green crab (Carcinus maenas) has been introduced on multiple continents beyond its native range, although its ecological impacts appear to vary among populations and regions. Our aim was to test whether consumer-resource dynamics under standardized conditions are similarly variable across the current geographic distribution of green crab, and to identify correlated morphological features. Methods Crabs were collected from multiple populations within both native (Northern Ireland) and invasive regions (South Africa and Canada). Their functional responses to local mussels (Mytilus spp.) were tested. Attack rates and handling times were compared among green crab populations within each region, and among regions (Pacific Canada, Atlantic Canada, South Africa, and Northern Ireland). The effect of predator and prey morphology on prey consumption was investigated. Results Across regions, green crabs consumed prey according to a Type II (hyperbolic) functional response curve. Attack rates (i.e., the rate at which a predator finds and attacks prey), handling times and maximum feeding rates differed among regions. There was a trend toward higher attack rates in invasive than in native populations. Green crabs from Canada had lower handling times and thus higher maximum feeding rates than those from South Africa and Northern Ireland. Canadian and Northern Ireland crabs had significantly larger claws than South African crabs. Claw size was a more important predictor of the proportion of mussels killed than prey shell strength. Discussion The differences in functional response between regions reflect observed impacts of green crabs in the wild. This suggests that an understanding of consumer–resource dynamics (e.g., the per capita measure of predation), derived from simple, standardized experiments, might yield useful predictions of invader impacts across geographical ranges
    corecore