38 research outputs found

    Forced mobilization accelerates pathogenesis: characterization of a preclinical surgical model of osteoarthritis

    Get PDF
    Preclinical osteoarthritis (OA) models are often employed in studies investigating disease-modifying OA drugs (DMOADs). In this study we present a comprehensive, longitudinal evaluation of OA pathogenesis in a rat model of OA, including histologic and biochemical analyses of articular cartilage degradation and assessment of subchondral bone sclerosis. Male Sprague-Dawley rats underwent joint destabilization surgery by anterior cruciate ligament transection and partial medial meniscectomy. The contralateral joint was evaluated as a secondary treatment, and sham surgery was performed in a separate group of animals (controls). Furthermore, the effects of walking on a rotating cylinder (to force mobilization of the joint) on OA pathogenesis were assessed. Destabilization-induced OA was investigated at several time points up to 20 weeks after surgery using Osteoarthritis Research Society International histopathology scores, in vivo micro-computed tomography (CT) volumetric bone mineral density analysis, and biochemical analysis of type II collagen breakdown using the CTX II biomarker. Expression of hypertrophic chondrocyte markers was also assessed in articular cartilage. Cartilage degradation, subchondral changes, and subchondral bone loss were observed as early as 2 weeks after surgery, with considerable correlation to that seen in human OA. We found excellent correlation between histologic changes and micro-CT analysis of underlying bone, which reflected properties of human OA, and identified additional molecular changes that enhance our understanding of OA pathogenesis. Interestingly, forced mobilization exercise accelerated OA progression. Minor OA activity was also observed in the contralateral joint, including proteoglycan loss. Finally, we observed increased chondrocyte hypertrophy during pathogenesis. We conclude that forced mobilization accelerates OA damage in the destabilized joint. This surgical model of OA with forced mobilization is suitable for longitudinal preclinical studies, and it is well adapted for investigation of both early and late stages of OA. The time course of OA progression can be modulated through the use of forced mobilization

    Forced mobilization accelerates pathogenesis: characterization of a preclinical surgical model of osteoarthritis

    Get PDF
    Preclinical osteoarthritis (OA) models are often employed in studies investigating disease-modifying OA drugs (DMOADs). In this study we present a comprehensive, longitudinal evaluation of OA pathogenesis in a rat model of OA, including histologic and biochemical analyses of articular cartilage degradation and assessment of subchondral bone sclerosis. Male Sprague-Dawley rats underwent joint destabilization surgery by anterior cruciate ligament transection and partial medial meniscectomy. The contralateral joint was evaluated as a secondary treatment, and sham surgery was performed in a separate group of animals (controls). Furthermore, the effects of walking on a rotating cylinder (to force mobilization of the joint) on OA pathogenesis were assessed. Destabilization-induced OA was investigated at several time points up to 20 weeks after surgery using Osteoarthritis Research Society International histopathology scores, in vivo micro-computed tomography (CT) volumetric bone mineral density analysis, and biochemical analysis of type II collagen breakdown using the CTX II biomarker. Expression of hypertrophic chondrocyte markers was also assessed in articular cartilage. Cartilage degradation, subchondral changes, and subchondral bone loss were observed as early as 2 weeks after surgery, with considerable correlation to that seen in human OA. We found excellent correlation between histologic changes and micro-CT analysis of underlying bone, which reflected properties of human OA, and identified additional molecular changes that enhance our understanding of OA pathogenesis. Interestingly, forced mobilization exercise accelerated OA progression. Minor OA activity was also observed in the contralateral joint, including proteoglycan loss. Finally, we observed increased chondrocyte hypertrophy during pathogenesis. We conclude that forced mobilization accelerates OA damage in the destabilized joint. This surgical model of OA with forced mobilization is suitable for longitudinal preclinical studies, and it is well adapted for investigation of both early and late stages of OA. The time course of OA progression can be modulated through the use of forced mobilization

    AF-M315E Propulsion System Advances and Improvements

    Get PDF
    Even as for the GR-1 awaits its first on-orbit demonstration on the planned 2017 launch of NASA's Green Propulsion Infusion Mission (GPIM) program, ongoing efforts continue to advance the technical state-of-the-art through improvements in the performance, life capability, and affordability of both Aerojet Rocketdyne's 1-N-class GR-1 and 20-N-class GR-22 green monopropellant thrusters. Hot-fire testing of a design upgrade of the GR-22 thruster successfully demonstrated resolution of a life-limiting thermo-structural issue encountered during prototype testing on the GPIM program, yielding both an approximately 2x increase in demonstrating life capability, as well as fundamental insights relating to how ionic liquid thrusters operate, thruster scaling, and operational factors affecting catalyst bed life. Further, a number of producibility improvements, related to both materials and processes and promising up to 50% unit cost reduction, have been identified through a comprehensive Design for Manufacturing and Assembly (DFMA) assessment activity recently completed at Aerojet Rocketdyne. Focused specifically on the GR-1 but applicable to the common-core architecture of both thrusters, ongoing laboratory (heavyweight) thruster testing being conducted under a Space Act Agreement at NASA Glenn Research Center has already validated a number of these proposed manufacturability upgrades, additionally achieving a greater than 40% increase in thruster life. In parallel with technical advancements relevant to conventional large spacecraft, a joint effort between NASA and Aerojet Rocketdyne is underway to prepare 1-U CubeSat AF-M315E propulsion module for first flight demonstration in 2018

    Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community

    Get PDF
    It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building

    Die Errichtung des Siegfried-Kopfes und die Deutsche Studentenschaft

    No full text
    Davy U. Die Errichtung des Siegfried-Kopfes und die Deutsche Studentenschaft. In: Davy U, Vasek T, eds. Der "Siegfried-Kopf". Eine Auseinandersetzung um ein Denkmal in der Universität Wien. Wien: WUV Universitätsverlag; 1991

    Reduction in disease progression by inhibition of transforming growth factor α-CCL2 signaling in experimental posttraumatic osteoarthritis

    No full text
    © 2015, American College of Rheumatology. OBJECTIVE: Transforming growth factor α (TGFα) is increased in osteoarthritic (OA) cartilage in rats and humans and modifies chondrocyte phenotype. CCL2 is increased in OA cartilage and stimulates proteoglycan loss. This study was undertaken to test whether TGFα and CCL2 cooperate to promote cartilage degradation and whether inhibiting either reduces disease progression in a rat model of posttraumatic OA.METHODS: Microarray analysis was used to profile expression of messenger RNA (mRNA) for Tgfa, Ccl2, and related genes in a rat model of posttraumatic OA. Rat primary chondrocytes and articular cartilage explants were treated with TGFα in the presence or absence of MEK-1/2, p38, phosphatidylinositol 3-kinase, Rho-associated protein kinase, or CCR2 inhibitors and immunostained for markers of cartilage degradation. The rat model was used to administer pharmacologic inhibitors of TGFα (AG1478) and CCL2 (RS504393) signaling for up to 10 weeks and assess histopathology and serum biomarkers of cartilage synthesis (C-propeptide of type II collagen [CPII]) and breakdown (C2C).RESULTS: Tgfa and Ccl2 mRNA were simultaneously up-regulated in articular cartilage in the rat model of posttraumatic OA. TGFα induced expression of CCL2, Mmp3, and Tnf in primary chondrocytes. Cleavage of type II collagen and aggrecan (by matrix metalloproteinases and ADAMTS-4/5, respectively) induced by TGFα was blocked by pharmacologic inhibition of CCL2 in cartilage explants. In vivo pharmacologic inhibition of TGFα or CCL2 signaling reduced Osteoarthritis Research Society International cartilage histopathology scores and increased serum CPII levels, but only TGFα inhibition reduced C2C levels intreated versus untreated rat OA cartilage.CONCLUSION: TGFα signaling stimulates cartilage degradation via a CCL2-dependent mechanism, but pharmacologic inhibition of the TGFα-CCL2 axis reduces experimental posttraumatic OA progression in vivo
    corecore