90 research outputs found

    The rich get richer: patterns of plant invasions in the United States

    Get PDF
    Observations from islands, small-scale experiments, and mathematical models have generally supported the paradigm that habitats of low plant diversity are more vulnerable to plant invasions than areas of high plant diversity. We summarize two independent data sets to show exactly the opposite pattern at multiple spatial scales. More significant, and alarming, is that hotspots of native plant diversity have been far more heavily invaded than areas of low plant diversity in most parts of the United States when considered at larger spatial scales. Our findings suggest that we cannot expect such hotspots to repel invasions, and that the threat of invasion is significant and predictably greatest in these areas

    Landscape-Scale Dynamics of Aspen in Rocky Mountain National Park, Colorado

    Get PDF
    Past studies of quaking aspen in Rocky Mountain National Park suggested that the aspen population is declining due to intensive browsing by elk (Cervus elaphus). These studies were conducted in the elk winter range, an area of intensive elk impact. The elk summer range experiences less intense grazing pressure. We tested the hypothesis that impacts of elk would be greater in the elk winter range than the summer range with landscape-scale data from the Park. The detrimental effects of elk on aspen are highly localized and, at larger spatial scales, elk browsing does not seem to be influencing the aspen population

    Show me the numbers: what data currently exist for non‐native species in the USA?

    Get PDF
    Non‐native species continue to be introduced to the United States from other countries via trade and transportation, creating a growing need for early detection and rapid response to new invaders. It is therefore increasingly important to synthesize existing data on non‐native species abundance and distributions. However, no comprehensive analysis of existing data has been undertaken for non‐native species, and there have been few efforts to improve collaboration. We therefore conducted a survey to determine what datasets currently exist for non‐native species in the US from county, state, multi‐state region, national, and global scales. We identified 319 datasets and collected metadata for 79% of these. Through this study, we provide a better understanding of extant non‐native species datasets and identify data gaps (ie taxonomic, spatial, and temporal) to help guide future survey, research, and predictive modeling efforts

    PLANT SPECIES INVASIONS ALONG THE LATITUDINAL GRADIENT IN THE UNITED STATES

    Get PDF
    It has been long established that the richness of vascular plant species and many animal taxa decreases with increasing latitude, a pattern that very generally follows declines in actual and potential evapotranspiration, solar radiation, temperature, and thus, total productivity. Using county-level data on vascular plants from the United States (3000 counties in the conterminous 48 states), we used the Akaike Information Criterion (AIC) to evaluate competing models predicting native and nonnative plant species density (number of species per square kilometer in a county) from various combinations of biotic variables (e.g., native bird species density, vegetation carbon, normalized difference vegetation in-dex), environmental/topographic variables (elevation, variation in elevation, the number of land cover classes in the county, radiation, mean precipitation, actual evapotranspiration, and potential evapotranspiration), and human variables (human population density, crop-land, and percentage of disturbed lands in a county). We found no evidence of a latitudinal gradient for the density of native plant species and a significant, slightly positive latitudinal gradient for the density of nonnative plant species. We found stronger evidence of a sig-nificant, positive productivity gradient (vegetation carbon) for the density of native plant species and nonnative plant species. We found much stronger significant relationships when biotic, environmental/topographic, and human variables were used to predict native plant species density and nonnative plant species density. Biotic variables generally had far greater influence in multivariate models than human or environmental/topographic variables. Later, we found that the best, single, positive predictor of the density of nonnative plant species in a county was the density of native plant species in a county. While further study is needed, it may be that, while humans facilitate the initial establishment invasions of non-native plant species, the spread and subsequent distributions of nonnative species are con-trolled largely by biotic and environmental factors

    The Art and Science of Weed Mapping

    Get PDF
    Land managers need cost-effective and informative tools for non-native plant species management. Many local, state, and federal agencies adopted mapping systems designed to collect comparable data for the early detection and monitoring of non-native species. We compared mapping information to statistically rigorous, plot-based methods to better understand the benefits and compatibility of the two techniques. Mapping non-native species locations provided a species list, associated species distributions, and infested area for subjectively selected survey sites. The value of this information may be compromised by crude estimates of cover and incomplete or biased estimations of species distributions. Incorporating plot-based assessments guided by a stratified-random sample design provided a less biased description of non-native species distributions and increased the comparability of data over time and across regions for the inventory, monitoring, and management of non-native and native plant species

    A Tamarisk Habitat Suitability Map for the Continental US

    Get PDF
    This paper presents a national-scale map of habitat suitability for a high-priority invasive species, Tamarisk (Tamarisk spp., salt cedar). We successfully integrate satellite data and tens of thousands of field sampling points through logistic regression modeling to create a habitat suitability map that is 90% accurate. This interagency effort uses field data collected and coordinated through the US Geological Survey and nation-wide environmental data layers derived from NASA s MODerate Resolution Imaging Spectroradiometer (MODIS). We demonstrate the utilization of the map by ranking the lower 48 US states (and the District of Columbia) based upon their absolute, as well as proportional, areas of highly likely and moderately likely habitat for Tamarisk. The interagency effort and modeling approach presented here could be applied to map other harmful species in the US and globally

    The Plant Diversity Sampling Design for The National Ecological Observatory Network

    Get PDF
    The National Ecological Observatory Network (NEON) is designed to facilitate an understanding of the impact of environmental change on ecological systems. Observations of plant diversity—responsive to changes in climate, disturbance, and land use, and ecologically linked to soil, biogeochemistry, and organisms—result in NEON data products that cross a range of organizational levels. Collections include samples of plant tissue to enable investigations of genetics, plot-based observations of incidence and cover of native and non-native species, observations of plant functional traits, archived vouchers of plants, and remote sensing airborne observations. Spatially integrating many ecological observations allows a description of the relationship of plant diversity to climate, land use, organisms, and substrates. Repeating the observations over decades and across the United States will iteratively improve our understanding of those relationships and allow for the testing of system-level hypotheses as well as the development of predictions of future conditions

    Widespread plant species : natives versus aliens in our changing world

    Get PDF
    CITATION: Stohlgren, T.J. et al. 2011. Widespread plant species: Natives vs. aliens in our changing world. Biological Invasions, 13:1931-1944. doi:10.1007/s10530-011-0024-9The original publication is available at https://www.springer.com/journal/10530Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.Publisher’s versio

    How should beta-diversity inform biodiversity conservation?

    Get PDF
    To design robust protected area networks, accurately measure species losses, or understand the processes that maintain species diversity, conservation science must consider the organization of biodiversity in space. Central is beta-diversity - the component of regional diversity that accumulates from compositional differences between local species assemblages. We review how beta-diversity is impacted by human activities, including farming, selective logging, urbanization, species invasions, overhunting, and climate change. Beta-diversity increases, decreases, or remains unchanged by these impacts, depending on the balance of processes that cause species composition to become more different (biotic heterogenization) or more similar (biotic homogenization) between sites. While maintaining high beta-diversity is not always a desirable conservation outcome, understanding beta-diversity is essential for protecting regional diversity and can directly assist conservation planning. Beta-diversity reveals the spatial scaling of diversity loss.Beta-diversity illuminates mechanisms of regional diversity maintenance.Human activities cause beta-diversity to increase, decrease, or remain unchanged.Conservation significance of beta-diversity shift depends on local diversity dynamics
    corecore