355 research outputs found

    Emission lines of Fe X in active region spectra obtained with the Solar Extreme-ultraviolet Research Telescope and Spectrograph

    Get PDF
    Fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 A wavelength range. A comparison of these with solar active region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the transition at 195.32 A is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between Ne = 1E8 and 1E13 cm-3, and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine Ne, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 A line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74.Comment: 11 pages, 10 figures, MNRAS in pres

    The Source of Three-minute Magneto-acoustic Oscillations in Coronal Fans

    Get PDF
    We use images of high spatial, spectral and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the coupling between wave phenomena observed at numerous heights in the solar atmosphere. Intensity oscillations of 3 minutes are observed to encompass photospheric umbral dot structures, with power at least three orders-of-magnitude higher than the surrounding umbra. Simultaneous chromospheric velocity and intensity time series reveal an 87 \pm 8 degree out-of-phase behavior, implying the presence of standing modes created as a result of partial wave reflection at the transition region boundary. An average blue-shifted Doppler velocity of ~1.5 km/s, in addition to a time lag between photospheric and chromospheric oscillatory phenomena, confirms the presence of upwardly-propagating slow-mode waves in the lower solar atmosphere. Propagating oscillations in EUV intensity are detected in simultaneous coronal fan structures, with a periodicity of 172 \pm 17 s and a propagation velocity of 45 \pm 7 km/s. Numerical simulations reveal that the damping of the magneto-acoustic wave trains is dominated by thermal conduction. The coronal fans are seen to anchor into the photosphere in locations where large-amplitude umbral dot oscillations manifest. Derived kinetic temperature and emission measure time-series display prominent out-of-phase characteristics, and when combined with the previously established sub-sonic wave speeds, we conclude that the observed EUV waves are the coronal counterparts of the upwardly-propagating magneto-acoustic slow-modes detected in the lower solar atmosphere. Thus, for the first time, we reveal how the propagation of 3 minute magneto-acoustic waves in solar coronal structures is a direct result of amplitude enhancements occurring in photospheric umbral dots.Comment: Accepted into ApJ (13 pages and 10 figures

    Absolute radiometric calibration of the EUNIS-06 170-205 A channel and calibration update for CDS/NIS

    Full text link
    The Extreme-Ultraviolet Normal-Incidence Spectrograph sounding-rocket payload was flown on 2006 April 12 (EUNIS-06), carrying two independent imaging spectrographs covering wave bands of 300-370 A in first order and 170-205 A in second order, respectively. The absolute radiometric response of the EUNIS-06 long-wavelength (LW) channel was directly measured in the same facility used to calibrate CDS prior to the SOHO launch. Because the absolute calibration of the short-wavelength (SW) channel could not be obtained from the same lab configuration, we here present a technique to derive it using a combination of solar LW spectra and density- and temperature-insensitive line intensity ratios. The first step in this procedure is to use the coordinated, cospatial EUNIS and SOHO/CDS spectra to carry out an intensity calibration update for the CDS NIS-1 waveband, which shows that its efficiency has decreased by a factor about 1.7 compared to that of the previously implemented calibration. Then, theoretical insensitive line ratios obtained from CHIANTI allow us to determine absolute intensities of emission lines within the EUNIS SW bandpass from those of cospatial CDS/NIS-1 spectra after the EUNIS LW calibration correction. A total of 12 ratios derived from intensities of 5 CDS and 12 SW emission lines from Fe Fe X - Fe XIII yield an instrumental response curve for the EUNIS-06 SW channel that matches well to a relative calibration which relied on combining measurements of individual optical components. Taking into account all potential sources of error, we estimate that the EUNIS-06 SW absolute calibration is accurate to about 20%.Comment: 11 pages, 10 figures, 4 tables. 2010, ApJ Suppl. In pres

    Underflight calibration of SOHO/CDS and Hinode/EIS with EUNIS-07

    Full text link
    Flights of Goddard Space Flight Center's Extreme-Ultraviolet Normal-Incidence Spectrograph (EUNIS) sounding rocket in 2006 and 2007 provided updated radiometric calibrations for SOHO/CDS and Hinode/EIS. EUNIS carried two independent imaging spectrographs covering wavebands of 300-370 A in first order and 170-205 A in second order. After each flight, end-to-end radiometric calibrations of the rocket payload were carried out in the same facility used for pre-launch calibrations of CDS and EIS. During the 2007 flight, EUNIS, SOHO CDS and Hinode EIS observed the same solar locations, allowing the EUNIS calibrations to be directly applied to both CDS and EIS. The measured CDS NIS 1 line intensities calibrated with the standard (version 4) responsivities with the standard long-term corrections are found to be too low by a factor of 1.5 due to the decrease in responsivity. The EIS calibration update is performed in two ways. One is using the direct calibration transfer of the calibrated EUNIS-07 short wavelength (SW) channel. The other is using the insensitive line pairs, in which one member was observed by EUNIS-07 long wavelength (LW) channel and the other by EIS in either LW or SW waveband. Measurements from both methods are in good agreement, and confirm (within the measurement uncertainties) the EIS responsivity measured directly before the instrument's launch. The measurements also suggest that the EIS responsivity decreased by a factor of about 1.2 after the first year of operation. The shape of the EIS SW response curve obtained by EUNIS-07 is consistent with the one measured in laboratory prior to launch. The absolute value of the quiet-Sun He II 304 A intensity measured by EUNIS-07 is consistent with the radiance measured by CDS NIS in quiet regions near the disk center and the solar minimum irradiance obtained by CDS NIS and SDO/EVE recently.Comment: 16 pages, 14 figures, 5 tables, accepted by ApJ Supplement (Sep. 2011

    Structural basis for complement factor H-linked age-related macular degeneration

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Nearly 50 million people worldwide suffer from age-related macular degeneration (AMD), which causes severe loss of central vision. A single-nucleotide polymorphism in the gene for the complement regulator factor H (FH), which causes a Tyr-to-His substitution at position 402, is linked to approximately 50% of attributable risks for AMD. We present the crystal structure of the region of FH containing the polymorphic amino acid His402 in complex with an analogue of the glycosaminoglycans (GAGs) that localize the complement regulator on the cell surface. The structure demonstrates direct coordination of ligand by the disease-associated polymorphic residue, providing a molecular explanation of the genetic observation. This glycan-binding site occupies the center of an extended interaction groove on the regulator's surface, implying multivalent binding of sulfated GAGs. This finding is confirmed by structure-based site-directed mutagenesis, nuclear magnetic resonance-monitored binding experiments performed for both H402 and Y402 variants with this and another model GAG, and analysis of an extended GAG-FH complex.B. Prosser is funded by the Wellcome Trust Structural Biology Training Program (075415/Z/04/Z). S. Johnson and P. Roversi were funded by grants to S.M. Lea from the Medical Research Council (MRC) of the United Kingdom (grants G0400389 and G0400775). D. Uhrin and P.N. Barlow were funded by the Wellcome Trust (078780/ Z/05/Z). S.J. Clark was funded by an MRC Doctoral Training Account (G78/7925), and R.B. Sim and A.J. Day were funded by MRC core funding to the MRC Immunochemistry Unit

    Fast Spectrum Molten Salt Reactor Options

    Get PDF
    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option

    Emission lines of Fe XI in the 257--407 A wavelength region observed in solar spectra from EIS/Hinode and SERTS

    Full text link
    Theoretical emission-line ratios involving Fe XI transitions in the 257-407 A wavelength range are derived using fully relativistic calculations of radiative rates and electron impact excitation cross sections. These are subsequently compared with both long wavelength channel Extreme-Ultraviolet Imaging Spectrometer (EIS) spectra from the Hinode satellite (covering 245-291 A), and first-order observations (235-449 A) obtained by the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS). The 266.39, 266.60 and 276.36 A lines of Fe XI are detected in two EIS spectra, confirming earlier identifications of these features, and 276.36 A is found to provide an electron density diagnostic when ratioed against the 257.55 A transition. Agreement between theory and observation is found to be generally good for the SERTS data sets, with discrepancies normally being due to known line blends, while the 257.55 A feature is detected for the first time in SERTS spectra. The most useful Fe XI electron density diagnostic is found to be the 308.54/352.67 intensity ratio, which varies by a factor of 8.4 between N_e = 10^8 and 10^11 cm^-3, while showing little temperature sensitivity. However, the 349.04/352.67 ratio potentially provides a superior diagnostic, as it involves lines which are closer in wavelength, and varies by a factor of 14.7 between N_e = 10^8 and 10^11 cm^-3. Unfortunately, the 349.04 A line is relatively weak, and also blended with the second-order Fe X 174.52 A feature, unless the first-order instrument response is enhanced.Comment: 9 pages, 5 figures, 13 tables; MNRAS in pres

    Climate change impacts on polar marine ecosystems: Toward robust approaches for managing risks and uncertainties

    Get PDF
    The Polar Regions chapter of the Intergovernmental Panel on Climate Change's Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) provides a comprehensive assessment of climate change impacts on polar marine ecosystems and associated consequences for humans. It also includes identification of confidence for major findings based on agreement across studies and weight of evidence. Sources of uncertainty, from the extent of available datasets, to resolution of projection models, to the complexity and understanding of underlying social-ecological linkages and dynamics, can influence confidence. Here we, marine ecosystem scientists all having experience as lead authors of IPCC reports, examine the evolution of confidence in observed and projected climate-linked changes in polar ecosystems since SROCC. Further synthesis of literature on polar marine ecosystems has been undertaken, especially within IPCC's Sixth Assessment Report (AR6) Working Group II; for the Southern Ocean also the Marine Ecosystem Assessment for the Southern Ocean (MEASO). These publications incorporate new scientific findings that address some of the knowledge gaps identified in SROCC. While knowledge gaps have been narrowed, we still find that polar region assessments reflect pronounced geographical skewness in knowledge regarding the responses of marine life to changing climate and associated literature. There is also an imbalance in scientific focus; especially research in Antarctica is dominated by physical oceanography and cryosphere science with highly fragmented approaches and only short-term funding to ecology. There are clear indications that the scientific community has made substantial progress in its ability to project ecosystem responses to future climate change through the development of coupled biophysical models of the region facilitated by increased computer power allowing for improved resolution in space and time. Lastly, we point forward—providing recommendations for future advances for IPCC assessments.publishedVersio
    • …
    corecore