136 research outputs found

    Effect of ABCG2, OCT1, and ABCB1(MDR1) Gene Expression on Treatment-Free Remission in a EURO-SKI Subtrial

    Get PDF
    Introduction Tyrosine kinase inhibitors (TKIs) can safely be discontinued in chronic myeloid leukemia (CML) patients with sustained deep molecular response. ABCG2 (breast cancer resistance protein), OCT1 (organic cation transporter 1), and ABCB1 (multidrug resistance protein 1) gene products are known to play a crucial role in acquired pharmacogenetic TKI resistance. Their influence on treatment-free remission (TFR) has not yet been investigated. Materials and Methods RNA was isolated on the last day of TKI intake from peripheral blood leukocytes of 132 chronic phase CML patients who discontinued TKI treatment within the European Stop Tyrosine Kinase Inhibitor Study trial. Plasmid standards were designed including subgenic inserts of OCT1, ABCG2, and ABCB1 together with GUSB as reference gene. For expression analyses, quantitative real-time polymerase chain reaction was used. Multiple Cox regression analysis was performed. In addition, gene expression cutoffs for patient risk stratification were investigated. Results The TFR rate of 132 patients, 12 months after TKI discontinuation, was 54% (95% confidence interval [CI], 46%-62%). ABCG2 expression (‰) was retained as the only significant variable (P = .02; hazard ratio, 1.04; 95% CI, 1.01-1.07) in multiple Cox regression analysis. Only for the ABCG2 efflux transporter, a significant cutoff was found (P = .04). Patients with an ABCG2/GUSB transcript level >4.5‰ (n = 93) showed a 12-month TFR rate of 47% (95% CI, 37%-57%), whereas patients with low ABCG2 expression (≤4.5‰; n = 39) had a 12-month TFR rate of 72% (95% CI, 55%-82%). Conclusion In this study, we investigated the effect of pharmacogenetics in the context of a CML treatment discontinuation trial. The transcript levels of the efflux transporter ABCG2 predicted TFR after TKI discontinuation

    Fermented wheat germ extract - nutritional supplement or anticancer drug?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fermented wheat germ extract (FWGE) is a multisubstance composition and, besides others, contains 2-methoxy benzoquinone and 2, 6-dimethoxy benzoquinone which are likely to exert some of its biological effects. FWGE interferes with anaerobic glycolysis, pentose cycle and ribonucleotide reductase. It has significant antiproliferative effects and kills tumor cells by the induction of apoptosis via the caspase-poly [ADP-ribose] polymerase-pathway. FWGE interacts synergistically with a variety of different anticancer drugs and exerted antimetastatic properties in mouse models. In addition, FWGE modulates immune response by downregulation of MHC-I complex and the induction of TNF-α and various interleukins. Data in the F-344 rat model provide evidence for a colon cancer preventing effect of FWGE.</p> <p>Clinical data from a randomized phase II trial in melanoma patients indicate a significant benefit for patients treated with dacarbazine in combination with FWGE in terms of progression free survival (PFS) and overall survival (OS). Similarly, data from studies in colorectal cancer suggested a benefit of FWGE treatment. Besides extension of OS and PFS, FWGE improved the quality of life in several studies.</p> <p>Conclusion</p> <p>In conclusion, available data so far, justify the use of FWGE as a non-prescription medical nutriment for cancer patients. Further randomized, controlled and large scale clinical studies are mandatory, to further clarify the value of FWGE as a drug component of future chemotherapy regimens.</p

    Intracellular retention of ABL kinase inhibitors determines commitment to apoptosis in CML cells

    Get PDF
    Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by highdose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs.Daniel B. Lipka, Marie-Christine Wagner, Marek Dziadosz, Tina Schnöder, Florian Heidel, Mirle Schemionek, Junia V. Melo, Thomas Kindler, Carsten Müller-Tidow, Steffen Koschmieder and Thomas Fische

    Multiple Myeloma Treatment in Real-world Clinical Practice : Results of a Prospective, Multinational, Noninterventional Study

    Get PDF
    Funding Information: The authors would like to thank all patients and their families and all the EMMOS investigators for their valuable contributions to the study. The authors would like to acknowledge Robert Olie for his significant contribution to the EMMOS study. Writing support during the development of our report was provided by Laura Mulcahy and Catherine Crookes of FireKite, an Ashfield company, a part of UDG Healthcare plc, which was funded by Millennium Pharmaceuticals, Inc, and Janssen Global Services, LLC. The EMMOS study was supported by research funding from Janssen Pharmaceutical NV and Millennium Pharmaceuticals, Inc. Funding Information: The authors would like to thank all patients and their families and all the EMMOS investigators for their valuable contributions to the study. The authors would like to acknowledge Robert Olie for his significant contribution to the EMMOS study. Writing support during the development of our report was provided by Laura Mulcahy and Catherine Crookes of FireKite, an Ashfield company, a part of UDG Healthcare plc, which was funded by Millennium Pharmaceuticals, Inc, and Janssen Global Services, LLC. The EMMOS study was supported by research funding from Janssen Pharmaceutical NV and Millennium Pharmaceuticals, Inc. Funding Information: M.M. has received personal fees from Janssen, Celgene, Amgen, Bristol-Myers Squibb, Sanofi, Novartis, and Takeda and grants from Janssen and Sanofi during the conduct of the study. E.T. has received grants from Janssen and personal fees from Janssen and Takeda during the conduct of the study, and grants from Amgen, Celgene/Genesis, personal fees from Amgen, Celgene/Genesis, Bristol-Myers Squibb, Novartis, and Glaxo-Smith Kline outside the submitted work. M.V.M. has received personal fees from Janssen, Celgene, Amgen, and Takeda outside the submitted work. M.C. reports honoraria from Janssen, outside the submitted work. M. B. reports grants from Janssen Cilag during the conduct of the study. M.D. has received honoraria for participation on advisory boards for Janssen, Celgene, Takeda, Amgen, and Novartis. H.S. has received honoraria from Janssen-Cilag, Celgene, Amgen, Bristol-Myers Squibb, Novartis, and Takeda outside the submitted work. V.P. reports personal fees from Janssen during the conduct of the study and grants, personal fees, and nonfinancial support from Amgen, grants and personal fees from Sanofi, and personal fees from Takeda outside the submitted work. W.W. has received personal fees and grants from Amgen, Celgene, Novartis, Roche, Takeda, Gilead, and Janssen and nonfinancial support from Roche outside the submitted work. J.S. reports grants and nonfinancial support from Janssen Pharmaceutical during the conduct of the study. V.L. reports funding from Janssen Global Services LLC during the conduct of the study and study support from Janssen-Cilag and Pharmion outside the submitted work. A.P. reports employment and shareholding of Janssen (Johnson & Johnson) during the conduct of the study. C.C. reports employment at Janssen-Cilag during the conduct of the study. C.F. reports employment at Janssen Research and Development during the conduct of the study. F.T.B. reports employment at Janssen-Cilag during the conduct of the study. The remaining authors have stated that they have no conflicts of interest. Publisher Copyright: © 2018 The AuthorsMultiple myeloma (MM) remains an incurable disease, with little information available on its management in real-world clinical practice. The results of the present prospective, noninterventional observational study revealed great diversity in the treatment regimens used to treat MM. Our results also provide data to inform health economic, pharmacoepidemiologic, and outcomes research, providing a framework for the design of protocols to improve the outcomes of patients with MM. Background: The present prospective, multinational, noninterventional study aimed to document and describe real-world treatment regimens and disease progression in multiple myeloma (MM) patients. Patients and Methods: Adult patients initiating any new MM therapy from October 2010 to October 2012 were eligible. A multistage patient/site recruitment model was applied to minimize the selection bias; enrollment was stratified by country, region, and practice type. The patient medical and disease features, treatment history, and remission status were recorded at baseline, and prospective data on treatment, efficacy, and safety were collected electronically every 3 months. Results: A total of 2358 patients were enrolled. Of these patients, 775 and 1583 did and did not undergo stem cell transplantation (SCT) at any time during treatment, respectively. Of the patients in the SCT and non-SCT groups, 49%, 21%, 14%, and 15% and 57%, 20%, 12% and 10% were enrolled at treatment line 1, 2, 3, and ≥ 4, respectively. In the SCT and non-SCT groups, 45% and 54% of the patients had received bortezomib-based therapy without thalidomide/lenalidomide, 12% and 18% had received thalidomide/lenalidomide-based therapy without bortezomib, and 30% and 4% had received bortezomib plus thalidomide/lenalidomide-based therapy as frontline treatment, respectively. The corresponding proportions of SCT and non-SCT patients in lines 2, 3, and ≥ 4 were 45% and 37%, 30% and 37%, and 12% and 3%, 33% and 27%, 35% and 32%, and 8% and 2%, and 27% and 27%, 27% and 23%, and 6% and 4%, respectively. In the SCT and non-SCT patients, the overall response rate was 86% to 97% and 64% to 85% in line 1, 74% to 78% and 59% to 68% in line 2, 55% to 83% and 48% to 60% in line 3, and 49% to 65% and 36% and 45% in line 4, respectively, for regimens that included bortezomib and/or thalidomide/lenalidomide. Conclusion: The results of our prospective study have revealed great diversity in the treatment regimens used to manage MM in real-life practice. This diversity was linked to factors such as novel agent accessibility and evolving treatment recommendations. Our results provide insight into associated clinical benefits.publishersversionPeer reviewe

    Space-to-Ground Communication for Columbus: A Quantitative Analysis

    No full text
    The astronauts on board the International Space Station (ISS) are only the most visible part of a much larger team engaged around the clock in the performance of science and technical activities in space. The bulk of such team is scattered around the globe in five major Mission Control Centers (MCCs), as well as in a number of smaller payload operations centres. Communication between the crew in space and the flight controllers at those locations is an essential element and one of the key drivers to efficient space operations. Such communication can be carried out in different forms, depending on available technical assets and the selected operational approach for the activity at hand. This paper focuses on operational voice communication and provides a quantitative overview of the balance achieved in the Columbus program between collaborative space/ground operations and autonomous on-board activity execution. An interpretation of the current situation is provided, together with a description of potential future approaches for deep space exploration missions

    Microbial succession during thermophilic digestion: the potential of Methanosarcina sp.

    No full text
    A distinct succession from a hydrolytic to a hydrogeno- and acetotrophic community was well documented by DGGE (denaturing gradient gel electrophoresis) and dHPLC (denaturing high performance liquid chromatography), and confirmed by qPCR (quantitative PCR) measurements and DNA sequence analyses. We could prove that Methanosarcina thermophila has been the most important key player during the investigated anaerobic digestion process. This organism was able to terminate a stagnation phase, most probable caused by a decreased pH and accumulated acetic acid following an initial hydrolytic stage. The lack in Methanosarcina sp. could not be compensated by high numbers of Methanothermobacter sp. or Methanoculleus sp., which were predominant during the initial or during the stagnation phase of the fermentation, respectively
    corecore