194 research outputs found

    Function of the Viral Matrix Proteins VP40 and VP24 for the Life Cycle of Ebola Virus

    Get PDF
    Ebola virus (EBOV), a member of the family Filoviridae in the order Mononegavirales, is the causative agent of a severe haemorrhagic fever. Due to its high case fatality rate of up to 90% and to the fact that no approved vaccination or treatment is available for EBOV infection, it is classified as a biosafety level 4 (BSL4) agent, which restricts reasearch on it to a few facilities worldwide. Systems that model individual aspects of the viral life cycle under BSL2 conditions are, therefore, highly desirable. Based on available reverse genetics systems we have developed several new systems that allow the analysis of viral genome transcription, replication and packaging, as well as nucleocapsid morphogenesis, particle formation, budding, entry and initial transcription in target cells under BSL2 conditions. We were able to model two of these steps, morphogenesis of a fully functional nucleocapsid and initital transcription in target cells, for the first time for a negative strand RNA-virus, which is a significant advantage in reverse genetics systems for these viruses. The established systems were then used to analyze the role of EBOV proteins, particularly the matrix proteins VP24 and VP40, in the viral life cycle. The role of VP24, the minor matrix protein of EBOV, has long been enigmatic. Recently, it has been shown to be involved in interferon antagonism; however, data regarding a possible involvement of VP24 in nucleocapsid morphogenesis and particle formation have remained controversial. Using a newly developed infectious virus-like particle assay with na¨ıve target cells we were able to show that VP24 is not necessary for budding of particles or genome packaging, but that it is indispensable for the formation of functional nucleocapsids. This is the first functional evidence for a role of VP24 in nucleocapsid formation. Although the role of the major matrix protein, VP40, is much better understood, virtually nothing is known about the function of the different oligomeric forms of VP40, namely dimers, hexamers and octamers. Previously, we have been able to show that VP40 octamerization is indispensable for the viral life cycle. As part of this work we have further analyzed the role of VP40 octamerization. Also, based on the available crystal structures for VP40 we designed and characterized a dimerization incompetent VP40 mutant and included this mutant in our studies. We were able to show that VP40 dimerization is a prerequisite for budding, while octamerization does not play a role in this process. Also, VP40 octamerization is not important for packaging or the formation of a functional nucleocapsid. However, VP40 octamers seem to influence transcription and/or replication of viral genomes, a phenomenon that has been previously described for the matrix protein of Rabies virus, another member of Mononegavirales. Also, our data suggest that VP40 is involved in inhibition of cellular transcription and/or translation, a phenomenon widely known for matrix proteins of Mononegavirales, and that VP40 dimerization is important for this function. Finally, we analyzed the interactions of the nucleocapsid protein NP with VP40. We were, for the first time, able to directly show an interaction between these two proteins, and have mapped the interaction domain on VP40 to two β-strands in the N-terminal domain. Based on the crystal structure of VP40 we have identified two residues in this region that may be crucial for the interaction with NP. This work has increased our understanding of the role of EBOV matrix proteins in the viral life cycle, and has revealed several new functions for these proteins. The obtained results will allow us to specifically target individual aspects of the viral life cycle in order to develop new countermeasures against EBOV, but also to further investigate molecular details of these processes

    An upstream open reading frame modulates ebola virus polymerase translation and virus replication

    Get PDF
    Ebolaviruses, highly lethal zoonotic pathogens, possess longer genomes than most other non-segmented negative-strand RNA viruses due in part to long 5' and 3' untranslated regions (UTRs) present in the seven viral transcriptional units. To date, specific functions have not been assigned to these UTRs. With reporter assays, we demonstrated that the Zaire ebolavirus (EBOV) 5'-UTRs lack internal ribosomal entry site function. However, the 5'-UTRs do differentially regulate cap-dependent translation when placed upstream of a GFP reporter gene. Most dramatically, the 5'-UTR derived from the viral polymerase (L) mRNA strongly suppressed translation of GFP compared to a β-actin 5'-UTR. The L 5'-UTR is one of four viral genes to possess upstream AUGs (uAUGs), and ablation of each uAUG enhanced translation of the primary ORF (pORF), most dramatically in the case of the L 5'-UTR. The L uAUG was sufficient to initiate translation, is surrounded by a "weak" Kozak sequence and suppressed pORF translation in a position-dependent manner. Under conditions where eIF2α was phosphorylated, the presence of the uORF maintained translation of the L pORF, indicating that the uORF modulates L translation in response to cellular stress. To directly address the role of the L uAUG in virus replication, a recombinant EBOV was generated in which the L uAUG was mutated to UCG. Strikingly, mutating two nucleotides outside of previously-defined protein coding and cis-acting regulatory sequences attenuated virus growth to titers 10-100-fold lower than a wild-type virus in Vero and A549 cells. The mutant virus also exhibited decreased viral RNA synthesis as early as 6 hours post-infection and enhanced sensitivity to the stress inducer thapsigargin. Cumulatively, these data identify novel mechanisms by which EBOV regulates its polymerase expression, demonstrate their relevance to virus replication and identify a potential therapeutic target

    iPSC screening for drug repurposing identifies anti‐RNA virus agents modulating host cell susceptibility

    Get PDF
    RNAウイルスの感染を阻害する既存薬の同定 --複数の異なるRNAウイルスに対して宿主細胞の感受性を下げることにより感染を抑制する薬剤--. 京都大学プレスリリース. 2021-04-07.iPS cells in drug screenings for COVID-19. 京都大学プレスリリース. 2021-04-07.Human pathogenic RNA viruses are threats to public health because they are prone to escaping the human immune system through mutations of genomic RNA, thereby causing local outbreaks and global pandemics of emerging or re‐emerging viral diseases. While specific therapeutics and vaccines are being developed, a broad‐spectrum therapeutic agent for RNA viruses would be beneficial for targeting newly emerging and mutated RNA viruses. In this study, we conducted a screen of repurposed drugs using Sendai virus (an RNA virus of the family Paramyxoviridae), with human‐induced pluripotent stem cells (iPSCs) to explore existing drugs that may present anti‐RNA viral activity. Selected hit compounds were evaluated for their efficacy against two important human pathogens: Ebola virus (EBOV) using Huh7 cells and severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) using Vero E6 cells. Selective estrogen receptor modulators (SERMs), including raloxifene, exhibited antiviral activities against EBOV and SARS‐CoV‐2. Pioglitazone, a PPARγ agonist, also exhibited antiviral activities against SARS‐CoV‐2, and both raloxifene and pioglitazone presented a synergistic antiviral effect. Finally, we demonstrated that SERMs blocked entry steps of SARS‐CoV‐2 into host cells. These findings suggest that the identified FDA‐approved drugs can modulate host cell susceptibility against RNA viruses

    Immunization with GP1 but Not Core-like Particles Displaying Isolated Receptor-Binding Epitopes Elicits Virus-Neutralizing Antibodies against Junín Virus

    Get PDF
    New World arenaviruses are rodent-transmitted viruses and include a number of pathogens that are responsible for causing severe human disease. This includes Junín virus (JUNV), which is the causative agent of Argentine hemorrhagic fever. The wild nature and mobility of the rodent reservoir host makes it difficult to control the disease, and currently passive immunization with high-titer neutralizing antibody-containing plasma from convalescent patients is the only specific therapy. However, dwindling supplies of naturally available convalescent plasma, and challenges in developing similar resources for other closely related viruses, have made the development of alternative antibody-based therapeutic approaches of critical importance. In this study, we sought to induce a neutralizing antibody response in rabbits against the receptor-binding subunit of the viral glycoprotein, GP1, and the specific peptide sequences in GP1 involved in cellular receptor contacts. While these specific receptor-interacting peptides did not efficiently induce the production of neutralizing antibodies when delivered as a particulate antigen (as part of hepatitis B virus core-like particles), we showed that recombinant JUNV GP1 purified from transfected mammalian cells induced virus-neutralizing antibodies at high titers in rabbits. Further, neutralization was observed across a range of unrelated JUNV strains, a feature that is critical for effectiveness in the field. These results underscore the potential of GP1 alone to induce a potent neutralizing antibody response and highlight the importance of epitope presentation. In addition, effective virus neutralization by rabbit antibodies supports the potential applicability of this species for the future development of immunotherapeutics (e.g., based on humanized monoclonal antibodies). Such information can be applied in the design of vaccines and immunogens for both prevention and specific therapies against this and likely also other closely related pathogenic New World arenaviruses.Fil: Roman Sosa, Gleyder. Ulm University Hospital; AlemaniaFil: Leske, Anne. Friedrich-Loeffler-Institut; AlemaniaFil: Ficht, Xenia. Ulm University Hospital; AlemaniaFil: Dau, Tung Huy. Friedrich-Loeffler-Institut; AlemaniaFil: Holzerland, Julia. Friedrich-Loeffler-Institut; AlemaniaFil: Hoenen, Thomas. Friedrich-Loeffler-Institut; AlemaniaFil: Beer, Martin. Friedrich-Loeffler-Institut; AlemaniaFil: Kammerer, Robert. Friedrich-Loeffler-Institut; AlemaniaFil: Schirmbeck, Reinhold. Friedrich-Loeffler-Institut; AlemaniaFil: Rey, Felix A.. Friedrich-Loeffler-Institut; AlemaniaFil: Cordo, Sandra Myriam. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Groseth, Allison. Friedrich-Loeffler-Institut; Alemani

    Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum

    Get PDF
    The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP) of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1). However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin) Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER), Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP), it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property

    Establishment of Fruit Bat Cells (Rousettus aegyptiacus) as a Model System for the Investigation of Filoviral Infection

    Get PDF
    Marburg virus and several species of Ebola virus are endemic in central Africa and cause sporadic outbreaks in this region with mortality rates of up to 90%. So far, there is no vaccination or therapy available to protect people at risk in these regions. Recently, different fruit bats have been identified as potential reservoirs. One of them is Rousettus aegyptiacus. It seems that within huge bat populations only relatively small numbers are positive for filovirus-specific antibodies or filoviral RNA, a phenomenon that is currently not understood. As a first step towards understanding the biology of filoviruses in bats, we sought to establish a model system to investigate filovirus replication in cells derived from their natural reservoir. Here, we provide the first insights into this topic by monitoring filovirus infection of a Rousettus aegyptiacus derived cell line, R06E. We were able to show that filoviruses propagate well in R06E cells, which can, therefore, be used to investigate replication and transcription of filovirus RNA and to very efficiently perform rescue of recombinant Marburg virus using reverse genetics. These results emphasize the suitability of the newly established bat cell line for filovirus research

    Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes

    Get PDF
    Zaire ebolavirus (ZEBOV), a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new therapeutics as well as provide potential insight into the trafficking and entry mechanism of other filoviruses

    Human Fatal Zaire Ebola Virus Infection Is Associated with an Aberrant Innate Immunity and with Massive Lymphocyte Apoptosis

    Get PDF
    Ebolavirus, especially the species Zaïre (ZEBOV), causes a fulminating hemorrhagic fever syndrome resulting in the death of most patients within a few days. In vitro studies and animal models have brought some insight as to the immune responses to ZEBOV infection. However, human immune responses have as yet been poorly investigated, mainly due to the fact that most outbreaks occur in remote areas of central Africa. Published studies, based on small numbers of biological samples have given conflicting results. We studied a unique collection of 50 blood samples obtained during five outbreaks that occurred between 1996 and 2003 in Gabon and Republic of Congo. We measured the plasma levels of 50 soluble factors known to be involved in immune responses to viral diseases. For the first time, using a cell staining technique, we analyzed circulating lymphocytes from ZEBOV-infected patients. We found that fatal outcome in humans is associated with aberrant innate immunity characterized by a “cytokine storm,” with hypersecretion of numerous proinflammatory mediators and by the noteworthy absence of antiviral interferon. The adaptive response is globally suppressed, showing a massive loss of CD4 and CD8 lymphocytes and the immune mediators they produce. These findings may have important pathological and therapeutic implications

    Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names

    Get PDF
    Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information’s (NCBI’s) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ ()////-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences
    corecore