81 research outputs found

    A note on confined diffusion

    Full text link
    The random motion of a Brownian particle confined in some finite domain is considered. Quite generally, the relevant statistical properties involve infinite series, whose coefficients are related to the eigenvalues of the diffusion operator. Unfortunately, the latter depend on space dimensionality and on the particular shape of the domain, and an analytical expression is in most circumstances not available. In this article, it is shown that the series may in some circumstances sum up exactly. Explicit calculations are performed for 2D diffusion restricted to a circular domain and 3D diffusion inside a sphere. In both cases, the short-time behaviour of the mean square displacement is obtained.Comment: 10 pages; Eq. (2) correcte

    Reuniting philosophy and science to advance cancer research

    Get PDF
    Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer

    Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging.

    Get PDF
    Fluorescence microscopy is used extensively in cell-biological and biomedical research, but it is often plagued by three major problems with the presently available fluorescent probes: photobleaching, blinking, and large size. We have addressed these problems, with special attention to single-molecule imaging, by developing biocompatible, red-emitting silicon nanocrystals (SiNCs) with a 4.1-nm hydrodynamic diameter. Methods for producing SiNCs by simple chemical etching, for hydrophilically coating them, and for conjugating them to biomolecules precisely at a 1:1 ratio have been developed. Single SiNCs neither blinked nor photobleached during a 300-min overall period observed at video rate. Single receptor molecules in the plasma membrane of living cells (using transferrin receptor) were imaged for ≄10 times longer than with other probes, making it possible for the first time to observe the internalization process of receptor molecules at the single-molecule level. Spatial variations of molecular diffusivity in the scale of 1-2 ”m, i.e., a higher level of domain mosaicism in the plasma membrane, were revealed

    A Family History of Dilated Cardiomyopathy Induced by Viral Myocarditis

    Get PDF
    Myocarditis can lead to acute heart failure, cardiogenic shock, or sudden death and later, dilated cardiomyopathy (DCM) with chronic heart failure. We report the cases of two DCM induced by acute and past myocarditis in the same family and expressed by its two main complications within few weeks: an hemodynamic presentation as a fulminant myocarditis rapidly leading to cardiac tranplantation and a rythmologic presentation as an electrical storm leading to catheter ablation of ventricular tachycardia. These cases ask the question of the family predisposition to viral myocarditis leading to DCM

    Evaluation of ID Fungi Plates Medium for Identification of Molds by MALDI Biotyper

    No full text
    International audienceMALDI-TOF mass spectrometry (MS) identification of pathogenic filamentous fungi is often impaired by difficulties in harvesting hyphae embedded in the medium and long extraction protocols. The ID Fungi Plate (IDFP) is a novel culture method developed to address such difficulties and improve the identification of filamentous fungi by MALDI-TOF MS. We cultured 64 strains and 11 clinical samples on IDFP, Sabouraud agar-chloramphenicol (SAB), and ChromID Candida agar (CAN2). We then compared the three media for growth, ease of harvest, amount of material picked, and MALDI-TOF identification scores after either rapid direct transfer (DT) or a long ethanol-acetonitrile (EA) extraction protocol
    • 

    corecore