8 research outputs found
Impact of PET acquisition durations on image quality and lesion detectability in whole-body 68Ga-PSMA PET-MRI
Lesion detectabilities for different acquisition durations and PET reconstructions. (ODS 13 kb
An artefact of PET attenuation correction caused by iron overload of the liver in clinical PET-MRI
Abstract Background Attenuation correction is one of the most important steps in producing quantitative PET image data. In hybrid PET-MRI systems, this correction is far from trivial, as MRI data are not correlated to PET attenuation properties of the scanned object. Commercially available systems often employ correction schemes based on segmenting the body into different tissue classes (air, lung tissue, fat-, and water-like soft tissue), e.g. by using a dual time-point Dixon sequence. However, several pitfalls are known for this approach. Here a specific artefact of MR-based PET attenuation correction is reported, caused by misidentifying the liver as lung tissue due to iron overload. Case presentation A patient with a history of hematopoietic stem cell transplantation underwent a whole-body [18F]FDG PET-MRI scan. Markedly low liver uptake values were noted in the PET images, seemingly caused by an erroneous assignment of lung tissue attenuation values to the liver. A closer investigation demonstrated markedly low MRI intensity values of the liver, indicative of secondary hemochromatosis (iron overload) most probably due to a history of multiple blood transfusions. Manual assignment of adequate liver attenuation values resulted in more realistic PET images. Conclusions Iron overload of the liver was identified as a cause of a specific attenuation correction artefact. It remains to be seen how frequent this artefact will be encountered; however, this case highlights that attenuation maps should always be checked during PET image interpretation in hybrid PET-MRI