708 research outputs found

    Non‐Blinking Single‐Photon Generation with Anisotropic Colloidal Nanocrystals: Towards Room‐Temperature, Efficient, Colloidal Quantum Sources

    Get PDF
    Blinking and single-photon emission can be tailored in CdSe/CdS core/shell colloidal dot-in-rods. By increasing the shell thickness it is possible to obtain almost non-blinking nanocrystals, while the shell length can be used to control single-photon emission probability

    Investigating the fast spectral diffusion of a quantum emitter in hBN using resonant excitation and photon correlations

    Full text link
    The ability to identify and characterize homogeneous and inhomogeneous dephasing processes is crucial in solid-state quantum optics. In particular, spectral diffusion leading to line broadening is difficult to evidence when the associated timescale is shorter than the inverse of the photon detection rate. Here, we show that a combination of resonant laser excitation and second-order photon correlations allows to access such fast dynamics. The resonant laser drive converts spectral diffusion into intensity fluctuations, leaving a signature in the second-order coherence function g(2)(τ)g^{(2)}(\tau) of the scattered light that can be characterized using two-photon coincidences -- which simultaneously provides the homogeneous dephasing time. We experimentally implement this method to investigate the fast spectral diffusion of a color center generated by an electron beam in the two-dimensional material hexagonal boron nitride. The g(2)(τ)g^{(2)}(\tau) function of the quantum emitter measured over more than ten orders of magnitude of delay times, at various laser powers, establishes that the color center experiences spectral diffusion at a characteristic timescale of a few tens of microseconds, while emitting Fourier-limited single photons (T2/2T11T_2/2T_1 \sim 1) between spectral jumps

    Room temperature single-photon sources based on single colloidal nanocrystals in microcavities

    Get PDF
    Abstract Direct lithography of resist blends, embedding semiconductor colloidal nanocrystals (NCs) is an innovative way to achieve nanopositioning of NCs in quantum-confined optical resonators. In this work, we show a new appealing approach for the fabrication of single-photon sources operating at room temperature by localizing semiconductor colloidal NCs into vertical planar microcavities with lithographic techniques

    First direct determination of the Boltzmann constant by an optical method

    Get PDF
    International audienceWe have recorded the Doppler profile of a well-isolated rovibrational line in the ν2 band of 14NH3. Ammonia gas was placed in an absorption cell thermalized by a water-ice bath. By extrapolating to zero pressure, we have deduced the Doppler width which gives a first measurement of the Boltzmann constant, kB, by laser spectroscopy. A relative uncertainty of 2x10-4 has been obtained. The present determination should be significantly improved in the near future and contribute to a new definition of the kelvin

    Effects of the lipase inhibitors, Triton WR-1339 and tetrahydrolipstatin on the synthesis and secretion of lipids by rat hepatocytes

    Get PDF
    AbstractThe lipase inhibitors, Triton WR-1339 and tetrahydrolipstatin, were incubated with rat hepatocytes. Triton WR-1339 increased the recovery of triacylglycerol in the hepatocytes and incubation medium by 31% and 38%, respectively. Tetrahydrolipstatin decreased the accumulation of newly synthesized, and of total triacylglycerol in the medium. This compound might be useful in determining mechanisms involved in intracellular triacylglycerol metabolism and the secretion of very low density lipoproteins

    Strong Purcell effect observed in single thick shell CdSe/CdS nanocrystals coupled to localized surface plasmons

    Full text link
    High quality factor dielectric cavities designed to a nanoscale accuracy are mostly used to increase the spontaneous emission rate of a single emitter. Here we show that the coupling, at room temperature, between thick shell CdSe/CdS nanocrystals and random metallic films offers a very promising alternative approach. Optical modes confined at the nanoscale induce strong Purcell factors reaching values as high as 60. Moreover the quantum emission properties can be tailored: strong antibunching or radiative biexcitonic cascades can be obtained with high photon collection efficiency and extremely reduced blinking.Comment: 16 pages, 7 figure

    Consequences of PPARα Invalidation on Glutathione Synthesis: Interactions with Dietary Fatty Acids

    Get PDF
    Glutathione (GSH) derives from cysteine and plays a key role in redox status. GSH synthesis is determined mainly by cysteine availability and γ-glutamate cysteine ligase (γGCL) activity. Because PPARα activation is known to control the metabolism of certain amino acids, GSH synthesis from cysteine and related metabolisms were explored in wild-type (WT) and PPARα-null (KO) mice, fed diets containing either saturated (COCO diet) or 18 : 3 n-3, LIN diet. In mice fed the COCO diet, but not in those fed the LIN diet, PPARα deficiency enhanced hepatic GSH content and γGCL activity, superoxide dismutase 2 mRNA levels, and plasma uric acid concentration, suggesting an oxidative stress. In addition, in WT mice, the LIN diet increased the hepatic GSH pool, without effect on γGCL activity, or change in target gene expression, which rules out a direct effect of PPARα. This suggests that dietary 18 : 3 n-3 may regulate GSH metabolism and thus mitigate the deleterious effects of PPARα deficiency on redox status, without direct PPARα activation

    Photon correlations in the collective emission of hybrid gold-(CdSe/CdS/CdZnS) nanocrystal supraparticles

    Full text link
    We investigate the photon statistics of the light emitted by single self-assembled hybrid gold-CdSe/CdS/CdZnS colloidal nanocrystal supraparticles through the detailed analysis of the intensity autocorrelation function g(2)(τ)g^{(2)}(\tau). We first reveal that, despite the large number of nanocrystals involved in the supraparticle emission, antibunching can be observed. We then present a model based on non-coherent F\"orster energy transfer and Auger recombination that well captures photon antibunching. Finally, we demonstrate that some supraparticles exhibit a bunching effect at short time scales corresponding to coherent collective emission

    Polarized single photon emission for quantum cryptography based on colloidal nanocrystals

    Get PDF
    In this paper, the evidence of a polarized and room temperature single photon emission from wet-chemically synthesized colloidal dot-in-a-rod is reported. The time and polarization resolved measurements clearly indicate a high degree of linear polarization and a lifetime of ∼11 ns. We report also about a viable strategy to develop single photon sources with polarization control for quantum cryptography
    corecore