995 research outputs found

    Strategic Investment Under Uncertainty: Merging Real Options with Game Theory

    Get PDF
    As becomes apparent from the standard text books in industrial organization (cf.Tirole, 1988, The Theory of Industrial Organization), the analysis of the e.ects of uncertainty within this field is yet underdeveloped.This paper shows that the new theory of strategic real options can be used to fill this empty hole .Based on the work by Smets (1991) standard models are identified, and they are analyzed by applying a method involving symmetric mixed strategies.As an illustration, extensions regarding asymmetry, technology adoption and decreasing uncertainty over time are reviewed.Among others, it is found that the value of a high cost firm can increase in its own cost.Furthermore, it is established to what extent investments are delayed when technologial progress is anticipated, and it is found that competition can be bad for welfare.productivity;innovation;technology;corporate finance;valuation;capital budgeting;investment;game theory;uncertainty

    Interference enhanced thermoelectricity in quinoid type structures

    Full text link
    Quantum interference (QI) effects in molecular junctions may be used to obtain large thermoelectric responses. We study the electrical conductance G and the thermoelec- tric response of a series of molecules featuring a quinoid core using density functional theory (DFT), as well as a semi-empirical interacting model Hamiltonian describing the {\pi}-system of the molecule which we treat in the GW approximation. Molecules with a quinoid type structure are shown to have two distinct destructive QI features close to the frontier orbital energies. These manifest themselves as two dips in the transmission, that remain separated, even when either electron donating or withdraw- ing side groups are added. We find that the position of the dips in the transmission and the frontier molecular levels can be chemically controlled by varying the electron donating or withdrawing character of the side groups as well as the conjugation length inside the molecule. This feature results in a very high thermoelectric power factor S^2G and figure of merit ZT, where S is the Seebeck coefficient, making quinoid type molecules potential candidates for efficient thermoelectric devices.Comment: 22 pages, 11 figure

    Dynamics of hard-sphere suspension using Dynamic Light Scattering and X-Ray Photon Correlation Spectroscopy: dynamics and scaling of the Intermediate Scattering Function

    Get PDF
    Intermediate Scattering Functions (ISF's) are measured for colloidal hard sphere systems using both Dynamic Light Scattering (DLS) and X-ray Photon Correlation Spectroscopy (XPCS). We compare the techniques, and discuss the advantages and disadvantages of each. Both techniques agree in the overlapping range of scattering vectors. We investigate the scaling behaviour found by Segre and Pusey [1] but challenged by Lurio et al. [2]. We observe a scaling behaviour over several decades in time but not in the long time regime. Moreover, we do not observe long time diffusive regimes at scattering vectors away from the peak of the structure factor and so question the existence of a long time diffusion coefficients at these scattering vectors.Comment: 21 pages, 11 figure

    Emulsification in binary liquids containing colloidal particles: a structure-factor analysis

    Get PDF
    We present a quantitative confocal-microscopy study of the transient and final microstructure of particle-stabilised emulsions formed via demixing in a binary liquid. To this end, we have developed an image-analysis method that relies on structure factors obtained from discrete Fourier transforms of individual frames in confocal image sequences. Radially averaging the squared modulus of these Fourier transforms before peak fitting allows extraction of dominant length scales over the entire temperature range of the quench. Our procedure even yields information just after droplet nucleation, when the (fluorescence) contrast between the two separating phases is scarcely discernable in the images. We find that our emulsions are stabilised on experimental time scales by interfacial particles and that they are likely to have bimodal droplet-size distributions. We attribute the latter to coalescence together with creaming being the main coarsening mechanism during the late stages of emulsification and we support this claim with (direct) confocal-microscopy observations. In addition, our results imply that the observed droplets emerge from particle-promoted nucleation, possibly followed by a free-growth regime. Finally, we argue that creaming strongly affects droplet growth during the early stages of emulsification. Future investigations could clarify the link between quench conditions and resulting microstructure, paving the way for tailor-made particle-stabilised emulsions from binary liquids.Comment: http://iopscience.iop.org/0953-8984/22/45/455102

    Cardiac rehabilitation meta-analysis of trials in patients with coronary heart disease using individual participant data (CaReMATCH): Project protocol

    Get PDF
    Background: Exercise-based cardiac rehabilitation (CR) has long been a cornerstone in the secondary prevention of coronary heart disease (CHD). Despite meta-analyses of randomised trials demonstrating a positive impact of CR on cardiovascular mortality, hospitalisation, exercise capacity and health related quality of life, the impact of CR on all-cause mortality remains uncertain, especially in the context of contemporary clinical practice. This CR meta-analysis of trials in patients with coronary heart disease using individual participant data (IPD) (CaReMATCH) seeks to (1) provide definitive estimates of the effectiveness of CR in terms of all-cause mortality, cardiovascular mortality, hospitalisation and health-related quality of life, and (2) determine the influence of individual patient characteristics (e.g. age, sex, risk factors) on the effectiveness of CR to inform a personalised CR-approach. Methods: Randomised controlled trials will be identified that were performed in the last decade, to ensure that CR was performed in combination with contemporary medical care (2010–2020). For our first aim, outcomes of interest include all cause- and CVD-related mortality and hospitalisations. To answer our second research question, we will collect data on exercise capacity, health-related quality of life, and patient baseline demographic and clinical data. Original IPD will be requested from the authors of all eligible trials; we will check original data and compile a master dataset. IPD meta-analyses will be conducted using a one-step meta-analysis approach where the IPD from all studies are modelled simultaneously whilst accounting for the clustering of participants within studies. Discussion: Findings from CaReMATCH will inform future (inter)national clinical and policy decision-making on the (personalised) application of exercise-based CR for patients with CHD

    Time-dependent embedding: surface electron emission

    Full text link
    An embedding method for solving the time-dependent Schr\"odinger equation is developed using the Dirac-Frenkel variational principle. Embedding allows the time-evolution of the wavefunction to be calculated explicitly in a limited region of space, the region of physical interest, the embedding potential ensuring that the wavefunction satisfies the correct boundary conditions for matching on to the rest of the system. This is applied to a study of the excitation of electrons at a metal surface, represented by a one-dimensional model potential for Cu(111). Time-dependent embedding potentials are derived for replacing the bulk substrate, and the image potential and vacuum region outside the surface, so that the calculation of electron excitation by a surface perturbation can be restricted to the surface itself. The excitation of the Shockley surface state and a continuum bulk state is studied, and the time-structure of the resulting currents analysed. Non-linear effects and the time taken for the current to arrive outside the surface are discussed. The method shows a clear distinction between emission from the localized surface state, where the charge is steadily depleted, and the extended continuum state where the current emitted into the vacuum is compensated by current approaching the surface from the bulk.Comment: 15 figure

    Biodesulphurized subbituminous coal by different fungi and bacteria studied by reductive pyrolysis. Part 1: Initial coal

    Get PDF
    One of the perspective methods for clean solid fuels production is biodesulphurization. In order to increase the effect of this approach it is necessary to apply the advantages of more informative analytical techniques. Atmospheric pressure temperature programming reduction (AP-TPR) coupled with different detection systems gave us ground to attain more satisfactory explanation of the effects of biodesulphurization on the treated solid products. Subbituminous high sulphur coal from ‘‘Pirin” basin (Bulgaria) was selected as a high sulphur containing sample. Different types of microorganisms were chosen and maximal desulphurization of 26% was registered. Biodesulphurization treatments were performed with three types of fungi: ‘‘Trametes Versicolor” – ATCC No. 200801, ‘‘Phanerochaeta Chrysosporium” – ME446, Pleurotus Sajor-Caju and one Mixed Culture of bacteria – ATCC No. 39327. A high degree of inorganic sulphur removal (79%) with Mixed Culture of bacteria and consecutive reduction by 13% for organic sulphur (Sorg) decrease with ‘‘Phanerochaeta Chrysosporium” and ‘‘Trametes Versicolor” were achieved. To follow the Sorg changes a set of different detection systems i.e. AP-TPR coupled ‘‘on-line” with mass spectrometry (AP-TPR/MS), on-line with potentiometry (AP-TPR/pot) and by the ‘‘off-line” AP-TPR/GC/MS analysis was used. The need of applying different atmospheres in pyrolysis experiments was proved and their effects were discussed. In order to reach more precise total sulphur balance, oxygen bomb combustion followed by ion chromatography was used

    Impact of prolonged sitting on vascular function in young girls

    Get PDF
    Excessive sedentary behaviour has serious clinical and public health implications; however, the physiological changes that accompany prolonged sitting in the child are not completely understood. Herein, we examined the acute effect a prolonged period of sitting has upon superficial femoral artery function in 7- to 10-year-old girls and the impact of interrupting prolonged sitting with exercise breaks. Superficial femoral artery endothelium-dependent flow-mediated dilatation, total shear rate, anterograde and retrograde shear rates and oscillatory shear index were assessed before and after two experimental conditions: a 3 h uninterrupted period of sitting (SIT) and a 3 h period of sitting interrupted each hour with 10 min of moderate-intensity exercise (EX). A mixed-model analysis of variance was used to compare between-condition and within-condition main effects, controlling for the within-subject nature of the experiment by including random effects for participant. Superficial femoral artery endothelium-dependent flow-mediated dilatation decreased significantly from pre- to post-SIT (mean difference 2.2% flow-mediated dilatation; 95% confidence interval = 0.60–2.94%, P < 0.001). This relative decline of 33% was abolished in the EX intervention. Shear rates were not significantly different within conditions. Our data demonstrate the effectiveness of short but regular exercise breaks in offsetting the detrimental effects of uninterrupted sitting in young girls

    Conditional phase shift from a quantum dot in a pillar microcavity

    Full text link
    Large conditional phase shifts from coupled atom-cavity systems are a key requirement for building a spin photon interface. This in turn would allow the realisation of hybrid quantum information schemes using spin and photonic qubits. Here we perform high resolution reflection spectroscopy of a quantum dot resonantly coupled to a pillar microcavity. We show both the change in reflectivity as the quantum dot is tuned through the cavity resonance, and measure the conditional phase shift induced by the quantum dot using an ultra stable interferometer. These techniques could be extended to the study of charged quantum dots, where it would be possible to realise a spin photon interface
    corecore