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and X-ray photon correlation spectroscopy: Dynamics and scaling
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Intermediate scattering functions are measured for colloidal hard sphere systems using both dy-
namic light scattering and x-ray photon correlation spectroscopy. We compare the techniques, and
discuss the advantages and disadvantages of each. Both techniques agree in the overlapping range
of scattering vectors. We investigate the scaling behavior found by Segré and Pusey [Phys. Rev.
Lett. 77, 771 (1996)] but challenged by Lurio et al. [Phys. Rev. Lett. 84, 785 (2000)]. We observe
a scaling behavior over several decades in time but not in the long-time regime. Moreover, we do
not observe long-time diffusive regimes at scattering vectors away from the peak of the structure
factor and so question the existence of long-time diffusion coefficients at these scattering vectors.
© 2011 American Institute of Physics. [doi:10.1063/1.3525101]

I. INTRODUCTION

Over the past decade, x-ray photon correlation spec-
troscopy (XPCS) has emerged as a valuable tool for the study
of dynamics in soft matter.1–5 The technique has two princi-
ple advantages over the well established technique of dynamic
light scattering (DLS): the first is that the shorter wavelengths
allow for measurements at larger scattering vectors (smaller
size scales); the second is that x-ray measurements do not suf-
fer from multiple scattering.6 These advantages are balanced
against two major disadvantages: x-rays have lower coher-
ence than (laser) light sources (leading to reduced correlation
intercepts), and samples can be easily damaged by intense
x-rays.

A number of authors have applied XPCS to study the dy-
namics of suspensions of colloidal particles.5, 7–11 This builds
on extensive studies using light scattering techniques,12, 13

and, more recently, microscopy techniques.14–16 The most
widely studied system is that of particles that behave as hard
spheres.17

The fundamental quantity measured in scattering exper-
iments is the intermediate scattering function (ISF), which
describes the dynamics of the particle number density. For
suspensions at moderate concentrations, the dynamics are of-
ten divided into three regimes: a short time diffusive regime,
where particles diffuse within their neighbor cages; a non-
diffusive crossover regime or plateau, where the interactions
between a particle and its neighbor cage are most clearly
exposed; and a long-time diffusion regime where the par-
ticles have escaped their neighbor cages. This long-time
regime is particularly difficult to access experimentally, and

a)Author to whom correspondence should be addressed. Electronic mail:
vincent.martinez@ed.ac.uk.

ambiguities in interpretation can arise depending on the
method of analysis used.

To date there have been no direct comparisons between
the two techniques on concentrated suspensions of colloidal
particles. There are, however, instances where XPCS and
DLS experiments have not been in agreement. Specifically,
DLS experiments carried out on sterically stabilized hard
spheres,18 found that the short- and long-time diffusion co-
efficients [Ds(q) and DL (q), respectively] both scale with the
structure factor. In other words, the ratio Ds(q)/DL (q) is in-
dependent of q. However, this finding has since been ques-
tioned by Lurio et al.,7 who used XPCS to study a system
of charge-stabilized polystyrene latex spheres in glycerol. In
this work they showed that the measured structure factors for
this system were consistent with those of hard spheres. How-
ever, when they investigated the dynamics of this system, they
did not observe the long-time scaling. There are several pos-
sible explanations for this discrepancy: (i) there is a funda-
mental difference between XPCS and DLS which results in
different measured behaviours; (ii) x-ray damage contributes
to the measured results in XPCS; (iii) the charge-stabilized
pseudo-hard-sphere system is not equivalent to the steric-
hard-sphere system; and/or (iv) the differences may arise from
ambiguities in the determination of the long-time diffusion
coefficient.19, 20

In this paper we compare the two techniques by exam-
ining sterically stabilized hard spheres using both DLS and
XPCS. By using the same samples for both techniques we
can eliminate sample variation and effects of sample prepara-
tion. We conduct analyses similar to those in Lurio et al.7 and
Segré and Pusey,18 and compare the results of the two meth-
ods. A previous study21 investigated the comparison between
DLS and XPCS but only at a low volume fraction, 0.164. In
that work the overlapping range of scattering vectors did not
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include the peak of the structure factor or the minimum of the
form factor, where contributions from multiple scattering are
maximal.

II. THEORY

DLS and XPCS are now standard methods for measuring
the dynamics of colloidal suspensions under certain condi-
tions and have been reviewed in numerous articles.2, 5, 12, 20, 21

In this section, we summarize some important aspects. The
basic quantity measured by both techniques is the (normal-
ized) time-averaged autocorrelation function (ICF) of the in-
tensity, I(q, t), of the scattered light:

g(2)(q, τ ) = 〈I (q, 0)I (q, τ )〉
〈I (q, 0)〉2

, (1)

where q is the magnitude of the scattering vector and τ is the
delay time. For ergodic systems the ICF factors according to
the Siegert relationship:

g(2)(q, τ ) = 1 + c | f (q, τ ) |2, (2)

where

f (q, τ ) = F(q, τ )
F(q, 0)

(3)

and

F(q, τ ) = 1
N

∑

j,k=1

〈exp[i #q( #r j (τ ) − #rk(0))]〉 (4)

is the intermediate scattering function—the autocorrelation
function of the q th spatial Fourier component of the particle
number density fluctuations. The polydispersity of the col-
loidal suspension, i.e., the (small) relative spread in parti-
cle radii (see below), is not explicitly taken into account. In
Eq. (2), c is an experimental constant determined by the ra-
tio of the coherence area to the detector area. Note also that
F(q, 0) = S(q) is the static structure factor.

For diffusive density fluctuations, we have

f (q, τ ) = exp(−q2 D(q)τ ). (5)

More generally, one calculates the time-dependent
quantity18, 22

D(q, τ ) = − 1
q2

d(ln[ f (q, τ )])
dτ

. (6)

The latter describes the evolution from short-time processes,
expressing the particles’ (diffusive) response to those hydro-
dynamic modes in the suspending liquid that propagate in-
stantaneously on the experimental time scale τ > 10−6s, to
the long-time processes associated with structural rearrange-
ment or diffusion over larger distances. These processes are
characterized by the short- and long-time collective diffusion
coefficients, respectively:

Ds(q) = lim
τ→τl

[D(q, τ )] and DL (q) = lim
τ→∞

[D(q, τ )], (7)

here τl is the lower limit of the experimental time window.
It is now well established that Ds(q) shows a minimum at
the position qm of the maximum in the static structure factor
S(q).18

III. METHODS

The particles used in this work consist of a copoly-
mer core of methymethacrylate (MMA) and trifluorethyl-
methacrylate (TFEMA). The copolymer TFEMA is added
to enable refractive index matching in a single solvent (cis-
decalin), and the suspension turbidity can be controlled by
changing the temperature.23 For these samples the index
matching is sufficiently good that multiple scattering is nearly
zero in the range of scattering angles studied here. The par-
ticles are sterically stabilized by a thin coating of poly-12-
hydroxystearic acid (PHSA), approximately 10 nm thick. The
particles used here are designated XL63, and have a radius
R = 185 nm and a polydispersity of 8%–9%.23–25 All times
are presented in units of the Brownian time, τB = R2/6Do

= 0.013s where Do is the diffusion constant for freely diffus-
ing particles. The hard-sphere-like interaction between these
particles in these suspensions is confirmed by the identifica-
tion of the equilibrium phase boundaries, i.e., the freezing and
melting points.17

Samples for DLS were prepared in 8 mm path length,
sealable glass cells. Samples for XPCS were transferred to
quartz capillaries of 1.5 mm diameter (Wolfgang Muller Glas
Technik, Berlin). A stirring ball was placed into the cell to fa-
cilitate the tumbling of the particle suspension to ensure good
mixing. The cells were sealed with Araldite, ensuring evapo-
ration was insignificant over time scales of months. For some
test measurements (see below) DLS measurements were also
carried out in the x-ray capillaries prior to or following the
x-ray measurements.

An ALV-6010 spectrometer was used for the DLS mea-
surements. A HeNe laser of wavelength 632.8 nm illuminates
the sample, and an avalanche photodiode (APD), located on
a goniometer, measures the scattered intensity at a specific
scattering angle θ . The accessible angular range is 15◦–150◦,
corresponding to a q range of ∼3.8–28 µm−1, encompassing
the peak in the structure factor at q ∼ 19 µm−1.

The XPCS experiments were performed at the ID10A
station of the Troika beamline at the European Synchrotron
Radiation Facility (ESRF) in Grenoble, France. A third gen-
eration synchrotron, combined with an undulator insertion
device, provides a partially coherent x-ray beam that has suf-
ficient brilliance for XPCS experiments. The standard “co-
herent” setup is based on two factors: (1) a strong collima-
tion of the beam to match the transverse coherence length
ξT of the TROIKA undulator source, ξT = λL/s, where s is
the source size and L is the sample-to-source distance; and
(2) wavelength selection using a standard Si(111) monochro-
mator that provides the longitudinal coherence length ξL =
λ2/%λ. At the ID10A beamline this routinely yields a 10
× 10 µm2 beamspot at the sample with a 1 µm longitu-
dinal coherence length at 8 keV (λ = 1.555 Å), well inside
the limit for path length differences in the present range of
scattering vectors q.2 Focusing optics (compound refractive
lenses) can be inserted into the beam to optimize the in-
tensity whenever the coherence conditions can be relaxed.
In this configuration the coherent intensity on the sample
can exceed 1010 photons/s. To match the speckle size a 0D
detector (scintillation counter) is placed behind a 100 µm
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φ

τ / τ

φ

FIG. 1. XPCS (open symbols) and DLS (lines) measurements of the inten-
sity autocorrelation functions for a dilute suspension (φ ∼ 0.01) of XL63 at
the q R values indicated: (a) unnormalized: (g(2)(q, τ ) − 1) and (b) normal-
ized: (g(2)(q, τ ) − 1)/c.

aperture at a distance D = 2240 mm behind the sample. Mea-
surements of the intensity fluctuations at small angles θ =
d/D are achieved by translating the detector by a distance
d perpendicular to the incident beam. A digital autocorre-
lator, connected to the detector, allows the direct measure-
ment of the ICF at a specific scattering vector of amplitude
q in the range ∼10–100 µm−1. Capillaries were mounted
in an evacuated sample chamber with temperature control
(T = 21 ◦C).

IV. RESULTS

Figure 1 shows a comparison between the two techniques
for a dilute suspension of hard sphere particles for three val-
ues of q R. Figure 1(a) shows the ICF [Eq. (2)], which demon-
strates the lower intercept of XPCS (symbols) relative to DLS
(lines)—this is a consequence of the lower coherence of the
x-rays compared to laser light. Figure 1(b) shows | f (q, τ )|2
after normalization by the intercept, demonstrating that the
two techniques give very similar results, despite the differ-
ence in intercept.

Figure 2 shows the ISFs for both techniques. As can be
seen, the reduced intercept of the XPCS measurements now
becomes important and leads to the nonzero baseline for two
of the scans. This is exacerbated by poor statistics, due to the
fact that at low volume fractions the scattering is very low.

τ / τ

φ
φ

φ

FIG. 2. Calculated ISFs from XPCS (open symbols) and DLS (lines) mea-
surements on dilute suspensions at the q R values indicated. The inset shows
DLS measurements carried out in DLS cells (lines) and x-ray capillaries
(open symbols) at the volume fractions indicated at a q R value of 3.48 (near
the peak of the structure factor).

This could be improved by accumulating for longer, however,
in the present case, this was not attempted to limit the possi-
bility of beam damage. Despite this difference, the results of
the initial decay are still consistent.

DLS measurements were typically carried out in large
sample cells with ∼8 mm path lengths, whereas x-ray
measurements must be carried out in small path length
(∼1.5 mm) x-ray capillaries. To determine whether the use
of capillaries causes any change in the dynamics (eg, due to
shear alignment during loading), the inset of Fig. 2 shows a
comparison between DLS measurements at two volume frac-
tions in standard DLS cells and in x-ray capillaries. The agree-
ment seen here demonstrates that any difference observed
between DLS and XPCS results is not due to different prepa-
ration methods or sample cells.

Turning now to higher volume fractions, the measured
ISFs from both techniques are shown in Fig. 3 for a
range of volume fractions and scattering vectors. Figure 3
shows that, in general, there is reasonable agreement be-
tween the two techniques over the range of volume fractions
shown, though deviations can be seen, particularly where
the statistics are such that XPCS does not reach a zero
baseline.

In order to compare the two techniques in more detail, we
fitted stretched exponential functions with the form f (q, τ )
= exp[−(τ/τ ∗

R)β)] by minimizing the chi-square value us-
ing a form of nonlinear least squares algorithm (Levenberg-
Marquardt) with IGOR PRO software from WaveMetrics. DLS
data were fitted out to delay times τ/τB = 20. Due to the in-
creased noise, XPCS data were fitted over a smaller range, out
to τ/τB = 5.

The results of this analysis are shown in Fig. 4 for both
DLS and XPCS data. Clearly, there is agreement between the
two techniques at volume fractions of 0.318 and 0.475. At
a volume fraction of 0.421, XPCS gives characteristic times
slightly larger than DLS and β values slightly lower than
DLS. However, the trends are clearly the same. The XPCS
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φ

τ / τ

φ

φ

FIG. 3. ISF from XPCS (open symbols) and DLS (lines) at the volume frac-
tions and q R values indicated.

data, although it is subject to higher statistical noise, gives
reasonable results out to higher q R values. Most importantly,
the two techniques show the same variation with q. Having
established that XPCS and DLS data give consistent results,
we now turn to the question of scaling.

The above results show that the differences in scaling ob-
served by Lurio et al.7 and Segré and Pusey18 cannot be due to
differences between the two techniques. Further, although the
samples can become damaged if exposed to the x-ray beam
for too long, these results show that, with care, damage can
be avoided, suggesting that this is not an explanation for the
differences observed in previous measurements. However, the
possibility of beam damage provides an upper limit on how
many runs can be made on each sample. By contrast, for DLS,
an arbitrarily large number of runs can be made to achieve the

τ
τ

β
β

FIG. 4. (a) Characteristic time τ ∗
R and (b) exponent β of stretched exponen-

tial fits to the ISF, shown as functions of q R, at the volume fractions indi-
cated. XPCS (filled symbols) and DLS (open symbols connected by lines).
Error bars are estimated from the fits. For the characteristic times, the error in
the Brownian time is also taken into account. Errors bars for DLS are smaller
than symbols. Lines are drawn to guide the eye.

desired statistical reliability. For the data studied here, 50 runs
of 1000 seconds were routinely made. For this reason, having
established the equivalence of the two techniques, the analysis
below will be limited to the DLS data.

Figure 5 plots ln(ISF) vs q2τ/τB at a volume fraction
of 0.456 for a range of scattering vectors for long (top) and
short times (bottom). Note that the range of delay times shown
is similar to those presented, respectively, in Figs. 1(a) and
3(a) of Ref. 18, and the noise on the DLS data is very low,
demonstrating that our data are comparable with those of
Segré and Pusey.

Segré and Pusey18 and then Lurio et al.7 estimated short-
and long-time diffusion coefficients by fitting straight lines
to the initial and final decays of ln(ISF) vs q2τ , as shown in
Fig. 5. Such analyses inherently assume that the fastest and
slowest detected density fluctuations are diffusive. The va-
lidity of this assumption will be discussed below. The full
identification of the short- and long-time diffusive regimes
requires the observation of plateaux in the time-dependent
diffusion coefficient D(q, τ ) [Eq. (6)] at short and long
times, respectively. To avoid duplicating unnecessary data,
we present, directly, D(q, τ )/Ds(q), where Ds(q) was ob-
tained by identifying a plateau in D(q, τ ) at short times. The
results are shown in Fig. 6 for several scattering vectors at
six volume fractions. The plateaux at short times suggest

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



054505-5 Dynamics and scaling of the ISF J. Chem. Phys. 134, 054505 (2011)

τ / τ

τ / τ

q2

q2

FIG. 5. Long-time (top) and short-time (bottom) behavior of the ISF deter-
mined using DLS at φ = 0.456 for several q R values as indicated. The repre-
sentation is the one used in Segré and Pusey (Ref. 18). The linear behavior at
short time allows the identification of a short time diffusion coefficient Ds (q).

that the assumption of the existence of a short-time diffusion
coefficient is reasonable. However, this is not the case at long
times, where there is no clear plateau in most cases, and thus
the long-time diffusion coefficient cannot be unambiguously
determined.

Despite the noise, our results are in qualitative agreement
with Fig. 2(a) of Ref. 18. A scaling of D(q, τ )/Ds(q) is rea-
sonably observed at volume fraction φ ≥ 0.456 for q R values
spanning from 1.85 up to 4.91, even though noise is present at
φ = 0.456. As the volume fraction is increased, the q depen-
dence appears to decrease and the curves begin to converge.
This trend is clearest for the volume fractions of 0.456, 0.498,
and 0.531. At 0.456 the curves converge, within the noise,
except for the lowest two q R values of 0.94 and 1.40. At a
volume fraction of 0.498, the data for q R = 1.85 begins to
deviate too, and at 0.531, in the metastable regime (i.e., where
crystallization will occur at sufficiently long times), the devi-
ation of the lowest three data sets becomes clearer. Interest-
ingly however, while the deviation of the data for the lowest
scattering vectors becomes more pronounced as volume frac-
tion increases, the scaling for the scattering vectors around
the peak becomes better. This scaling fails at long times, as
highlighted in the log-log representation shown in the insets
of Fig. 6 for the highest volume fractions. By contrast, with
the results presented here, Segré and Pusey clearly observed
a plateau at long times at φ = 0.456 for all qR values span-

ning from 1.0 to 3.9, while we observe such plateaux only at
qR values near the peak of the structure factor. Thus we ques-
tion the existence of a long-time diffusive regime, and so a
long-time diffusion coefficient DL (q), in our system.

The numerical derivative required to calculate D(q, τ ) in-
troduces noise and makes it difficult to identify a long-time
diffusive regime, where such a regime exists. An alternative
analysis that more clearly exposes the diffusive regimes, is to
calculate the width function,26 defined by analogy with the
mean-square displacement as

w(q, τ ) = −ln[ f (q, τ )]/q2, (8)

which is shown as a function of delay time in Fig. 7. The insets
show the width function at qm . In this representation diffusive
regimes are identified where w(q, t) grows linearly with de-
lay time. This determination of diffusion does not require nu-
merical differentiation of the data (in contrast to Fig. 6), and
is insensitive to the time scale on which the ISF is plotted (in
contrast to Fig. 5). Clearly, this representation shows unequiv-
ocally that short-time diffusive regimes are observed over sev-
eral decades for all volume fraction and q R values probed.
However, Fig. 7 shows that difficulties occur in identifying
linear long-time behavior at some q values. In other words,
the ISF and so the width function attain the experimental noise
floor before the anticipated long-time diffusive regime is ob-
served. For the data shown here, long-time diffusive behavior
can only be discerned at qm for φ ≥ 0.498, and this is shown
in the insets; the long-time diffusive regime is not attained for
other q values or for lower volume fractions. This is consistent
with recent experiments which showed that the mean-squared
distance particles must traverse, in order for density fluctua-
tions to forget the effects of packing constraints, is smallest
at qm .13 A consequence of this is that we are unable to di-
rectly conclude whether or not the ratio Ds(q)/DL (q) is inde-
pendent of q, as found by Segré and Pusey,18 a result which
was disputed by Lurio et al.7 Returning to the scaling behav-
ior, as φ is increased, D(q, τ )/Ds(q) seemed to scale better
in the first decades even though the last decades show an in-
creasing q-dependence once φ ≥ 0.498. To quantify this ob-
servation, we choose three fixed delay times and plot in Fig. 8
the standard deviation of the “spread” or D(q, τ )/Ds(q) val-
ues at these times as a function of volume fraction. The scal-
ing is clearly observed via the convergence of this quantity as
volume fraction is increased. Of course the decay of the ISF
shifts to longer delay times as volume fraction increases, so
this analysis is limited. However, it clearly demonstrates the
scaling as volume fraction increases. Keeping in mind that the
determination of the plateau at long times is ambiguous, par-
ticularly at low volume fractions, Fig. 9 shows the q R depen-
dence of the inverse of the short-time collective diffusion co-
efficient. Clearly, Do/Ds(q) scales with the structure factor in
agreement with previous results, e.g., Segré and Pusey.18 We
stated above that the determination of the long-time diffusion
coefficient is problematic. In order to remove the ambiguity
associated with the measurement of a long-time plateau, we
simply determine the apparent diffusion coefficients D(q, τx )
at several delay times τx . The ratio D(q, τx )/Ds(q) is then
plotted in Fig. 10 for several volume fractions. At the lowest
volume fraction measured there is some hint of scaling only
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τ

φ

τ

φ

τ

τ/τ

φ

φ

φ

τ/τ

φ

FIG. 6. Time-dependent diffusion coefficient D(q, τ )/Ds (q), from DLS experiments, normalized by the short-time diffusion coefficient at q R values and
volume fractions indicated. Insets show the same data on a double-log scale.

at the early times but clearly not at long times. As the vol-
ume fraction increases, any hint of scaling disappears, and the
ratio never demonstrates q-independence at any delay time.
Finally, Fig. 11 shows D(q, τ )/Ds(q) near the peak in the
structure factor for several volume fractions. This graph con-
firms that at the peak it is just about possible to define a diffu-
sive regime at long times [see also Fig. 7(f)]. Of more interest
is the volume fraction dependence of the rate at which the
behavior deviates from diffusive. At τ/τB = 100 (after three
decades in time) D(q, τ )/Ds(q) has dropped by almost an
order of magnitude at a volume fraction of 0.549, whereas
D(q, τ )/Ds(q) remains approximately 1 at a volume fraction
of 0.213. So, as the volume fraction increases, the system de-
viates more quickly from diffusive behavior, even though the
dynamics are slower.

V. DISCUSSION

The first part of the results compared DLS and XPCS
results on identical samples. As far as we are aware, this is

the first comprehensive comparison between DLS and XPCS
on concentrated hard-sphere samples. The results demonstrate
a number of things. Within statistical errors, the ISFs de-
termined from DLS and XPCS agree very well. The main
limitation of XPCS is that good sample statistics are much
harder to obtain, partly due to the lower coherence, and partly
due to beam damage, which limits how long statistics can be
accumulated for on a particular sample. This is particularly
true for the higher volume fractions, where restricted diffu-
sion means individual particles are exposed to the x-ray beam
for long periods of time. In order to improve the statistics at
high volume fractions, it would be desirable to have the sam-
ples mounted on a translation stage so that a series of short
measurements can be made at different positions in the sam-
ple to limit sample damage. Such studies are currently being
planned.

Despite this, the results confirm that careful use of XPCS
can provide data of similar quality to DLS. There are a num-
ber of situations where XPCS would be preferable to DLS:
first, where particles are smaller than R ∼ 120 nm, where the
structure factor peak cannot be accessed using DLS; second,

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



054505-7 Dynamics and scaling of the ISF J. Chem. Phys. 134, 054505 (2011)

τ

φ

τ

φ

τ

τ / τ Β

φ

φ

φ φ

τ / τΒ

φ

FIG. 7. Width function as function of delay time at q R values and volume fractions indicated. Lines and dashed lines are linear fits of log[w(q, τ )]
= log(Ds (q)) + log(τ ) at, respectively, short and long times. Inset shows the width function at the q R values nearest to the peak of structure factor for the
corresponding volume fraction (scale as main panel).

for samples where multiple scattering is significant; and fi-
nally, where dynamics need to be studied at higher q values
as shown in Fig. 4 (though not explored here, even higher val-
ues are possible using XPCS).

τ/
τ

φ

τ/τ
τ/τ
τ/τ

FIG. 8. Standard deviation of D(q, τ/τB )/Ds (q), from DLS experiments, at
fixed values of τ/τB and for q R values in the range [2.29,4.91].

We turn now to the results of the scaling anal-
ysis. First, we confirm that Ds(q) scales with S(q).
Second, we find that the long-time diffusion coefficient can-
not be defined away from the peak for our system, so

FIG. 9. Inverse of the short-time diffusion coefficient expressed in terms
of the free diffusion coefficient D0 at volume fractions indicated. Lines are
drawn to guide the eye.
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τ

τ

τ

τ

τ

τ

τ

FIG. 10. Ratio of D(q, τx )/Ds (q) as a function of q R at volume fraction φ
equal to 0.475 (circles), 0.498 (squares), 0.519 (triangles), 0.531 (diamonds),
0.540 (stars) and 0.549 (crosses). Volume fraction increases from the top in
the curves in each panel. Each panel corresponds to a specific τx value as
indicated. The bottom panel shows D(q, τx )/Ds (q) at the longest time before
noise starts to dominate. Note that this time increases with volume fraction.
Within the noise there is no real indication of scaling between short and long
time behaviour.

the scaling of the ratio Ds(q)/DL (q) observed by Segré
and Pusey,18 but not by Lurio et al.,7 cannot be con-
firmed. Third, we do observe a scaling behavior of the time-
dependent diffusion coefficient at high volume fraction. This
result agrees with Segré and Pusey but is not observed by
Lurio et al.

As the system under study is a hard-sphere system very
similar to the system used by Segré and Pusey (though with
higher polydispersity), the difference in the results is puz-
zling. One possible explanation is in the way the long-time
diffusion coefficient is determined. Our results have shown
that the determination of this quantity is problematic, and
according to our analysis, it cannot be defined away from
the structure factor peak. Inspection of Fig. 11, for exam-
ple, shows that a clear plateau can be identified at early times
(Ds(q)), but that a plateau is much less well defined at long
times. It is possible that the differences between our results
and those of Segré and Pusey are related to the determination
of this property.

The identification of a long-time diffusive regime for the
collective dynamics (through the width function, Fig. 7) is

τ

τ / τ

FIG. 11. Time-dependent diffusion coefficient, normalised to the short-time
diffusion coefficient, as a function of delay time for several volume fractions
at q R = 3.57 (around the peak of the structure factor for higher volume frac-
tions).

clearly observed around qm but not at other q values. So the
following question can be asked: does a long-time diffusive
regime exist for all q? We consider the quantity 〈%r2(τ c

m(q))〉,
which corresponds to the mean-squared distance a particle
has to move for the number density fluctuations to forget ex-
cluded volume effects, where 〈%r2〉 and τ c

m(q) are, respec-
tively the time-dependent mean-square displacement and the
delay time at the crossover between the fast and slow pro-
cesses. This quantity was previously introduced and measured
for the same particle suspensions.13 At φ f = 0.498 and qm ,
the quantity 〈%r2(τ c

m(qm))〉 is smaller by a factor of ∼5 com-
pared to 〈%r2(τ c

m(q))〉 at qR = 1.0. This quantifies the diffi-
culty in identifying the long-time diffusive behavior from the
coherent ISF at q vectors away from the peak of the structure
factor, simply because particles are unable to move the dis-
tances necessary for the number density fluctuations to forget
packing constraint effects.

Interestingly, this question has been independently ad-
dressed in a recent paper by Holmqvist and Nagele27 for
charge-stabilized colloids. These authors do observe the long-
time scaling behavior found by Segré and Pusey18 for scat-
tering vectors around the peak of the structure factor. One
difference between their system and the one studied here
is that due to the smaller size, lower viscosity, and perhaps
the nature of the interactions, the time scales are very much
faster—the ISF is complete within ≈ 30 ms, whereas for the
data presented here the decays at the highest volume frac-
tions are of the order of 10 s, almost 1000 times longer. Note
that in both cases the ISF decays fully during the measure-
ment time. This demonstrates that the complete decay of the
ISF is not sufficient to infer that a long-time diffusive limit
has been reached. In our experiments 50 × 1000 s measure-
ments were made, but we were still unable to observe long-
time diffusive behavior except at the peak of the structure
factor. So it may be that for the hard-sphere system used
here, the determination of a true long-time limit away from
the structure factor peak is not possible with any reasonable
experimental time. This is also consistent with the analy-
sis of Holmqvist and Nagele,27 who found that the scaling
behavior is an approximate feature, with a long-time mode
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which is only observable at wavevectors where S(q) is large.
Nevertheless, an analysis similar to our Fig. 7 for the data
shown in Holmqvist and Nagele27 would provide a more un-
ambiguous measure of the determination of the long-time dif-
fusion coefficient, and would shed more light on the observed
differences.

More generally, the results summarized in Fig. 11 show
that the evolution of the time-dependent diffusion coefficient
changes dramatically with volume fraction. At low volume
fractions the transition between the two takes a long time.
However, as volume fraction increases, the short- and long-
time processes quickly separate, as more and more particles
become trapped in neighbor cages. The magnitude of this sep-
aration increases, and occurs at shorter times, as the dynamics
become slower.

VI. CONCLUSIONS

We present an extensive study of concentrated colloidal
hard-sphere suspensions using both DLS and XPCS as func-
tions of volume fraction and scattering vector. A scaling be-
havior, found by Segré and Pusey,18 is observed over several
decades in time but not in the long-time regime where signif-
icant q-dependence is observed for higher volume fractions.
While the short-time diffusion regimes clearly exist at all
volume fractions and scattering vectors, long-time diffusive
regimes are only observed near the peak of the structure fac-
tor at high volume fractions. Thus the existence of a collective
long-time diffusive regime is rather questionable, even though
an “apparent” linear regime is observed in the common repre-
sentation ln(ISF) vs q2τ used by both Lurio et al.7 and Segré
and Pusey.18 By interpreting the quantity 〈%r2(τ c

m(q))〉, mea-
sured by van Megen et al.,13 we explain the absence of a long-
time diffusive regime by simply arguing that particles are un-
able to move the distances necessary for the number density
fluctuations to forget packing constraint effects during acces-
sible time scales.
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Intermediate Scattering Functions (ISF) are measured for colloidal hard sphere sys-

tems using both Dynamic Light Scattering (DLS) and X-ray Photon Correlation

Spectroscopy (XPCS). We compare the techniques, and discuss the advantages and

disadvantages of each. Both techniques agree in the overlapping range of scattering

vectors. We investigate the scaling behaviour found by Segre and Pusey1 but chal-

lenged by Lurio et al.2. We observe a scaling behaviour over several decades in time

but not in the long time regime. According the time range, our results contrast and

agree with both Segre and Pusey, and Lurio et al. Finally, we do not observe long

time diffusive regimes at scattering vector away from the peak of the structure factor

and so question the existence of a long time diffusion coefficient.
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I. INTRODUCTION

Over the past decade, X-ray Photon Correlation Spectroscopy (XPCS) has emerged as a

valuable tool for the study of dynamics in soft matter3–7. The technique has two principle

advantages over the well established technique of Dynamic Light Scattering (DLS): the

first is that the shorter wavelengths allow for measurements at larger scattering vectors

(smaller size scales); the second is that X-ray measurements do not suffer from multiple

scattering. These advantages are balanced against two major disadvantages: X-rays have

lower coherence than (laser) light sources (leading to reduced correlation intercepts); and

that samples can be easily damaged by intense X-rays.

A number of authors have applied XPCS to study the dynamics of suspensions of col-

loidal particles2,7–11. This builds on extensive studies using light scattering techniques12,13,

and, more recently, microscopy techniques14–16. The most widely studied system is that of

particles which behave as hard spheres17.

The fundamental quantity measured in scattering experiments is the Intermediate Scat-

tering Function (ISF) which describes the dynamics of the particle number density. For

suspensions at moderate concentrations, the dynamics are often divided into three regimes:

a short time diffusive regime, where particles diffuse within their neighbour cages; a non-

diffusive crossover regime or plateau, where the interactions between a particle and its

neighbour cage are most clearly exposed; and a long time diffusion regime where the par-

ticles have escaped their neighbour cages. This long time regime is particularly difficult to

access experimentally, and ambiguities in interpretation can arise depending on the method

of analysis used.

To date there have been no direct comparisons between the two techniques on concen-

trated suspensions of colloidal particles. There are however instances where XPCS and

DLS experiments have not been in agreement. Specifically, DLS experiments carried out on

sterically stabilized hard spheres1, found that the short and long time diffusion coefficients

(Ds(q) and DL(q) respectively) both scale with the structure factor - in other words the ratio

Ds(q)/DL(q) is independent of q. However, this finding has since been questioned by Lurio

et al.2, who used XPCS to study a system of charge-stabilized polystyrene latex spheres in

glycerol. In this work they showed that the measured structure factors for this system were

consistent with those of hard spheres - however, when they investigated the dynamics of

2



this system, they did not observe the long time scaling. There are several possible expla-

nations for this discrepancy: i) there is a fundamental difference between XPCS and DLS

which results in different measured behaviours; ii) X-ray damage contributes to the mea-

sured results in XPCS; iii) the charge-stabilized pseudo-hard-sphere system is not equivalent

to the steric hard sphere system; and/or iv) the differences may arise from ambiguities in

the determination of the long time diffusion coefficient18,19.

In this paper we compare the two techniques by examining sterically stabilized hard

spheres using both DLS and XPCS. By using the same samples for both techniques we

can eliminate sample variation and effects of sample preparation. We conduct analyses

similar to those in Lurio et al.2 and Segre and Pusey1, and compare the results of the two

methods. A previous study20 investigated the comparison between DLS and XPCS but only

at a low volume fraction, 0.164. In that work the overlapping range of scattering vectors

did not include the peak of the structure factor or the minimum of the form factor, where

contributions from multiple scattering are maximal.

II. THEORY

DLS and XPCS are now standard methods for measuring the dynamics of colloidal sus-

pensions under certain conditions and have been reviewed in numerous articles4,7,12,19,20. In

this section, we summarize some important aspects. The basic quantity measured by both

techniques is the (normalized) time-averaged autocorrelation function (ICF) of the intensity,

I(q,t), of the scattered light:

g(2)(q, τ) =
〈I(q, 0)I(q, τ)〉
〈I(q, 0)〉2

(1)

where q is the magnitude of the scattering vector, τ is the delay time. For ergodic systems

the ICF factors according to the Siegert relationship:

g(2)(q, τ) = 1 + c | f(q, τ) |2 (2)

where

f(q, τ) =
F (q, τ)

F (q, 0)
(3)

and

F (q, τ) =
1

N

∑
j,k=1

〈exp [i~q(~rj(τ)− ~rk(0))]〉 (4)
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is is the intermediate scattering function - the auto-correlation function of the qth spatial

Fourier component of the particle number density fluctuations. The small spread in particle

radii (see below) is not explicitly taken into account. In Eq. (2) c is an experimental

constant determined by the ratio of the coherence area to the detector area. Note also that

F (q, 0) = S(q) is the static structure factor.

For diffusive density fluctuations we have,

f(q, τ) = exp(−q2D(q)τ) (5)

More generally one calculates the time-dependent quantity1,21

D(q, τ) =
d(−ln(F (q, τ))/q2)

dτ
(6)

The latter describes the evolution from short time processes, expressing the particles (dif-

fusive) response to those hydrodynamic modes in the suspending liquid that propagate

instantaneously on the experimental time scale τ > 10−6s to the long-time processes asso-

ciated with structural rearrangement or diffusion over larger distances. respectively these

processes are characterised by the short and long time collective diffusion coefficients:

Ds(q) = lim
τ→l

[D(q, τ)] and DL(q) = lim
τ→∞

[D(q, τ)] (7)

Where τl is the lower limit of the experimental time window. It is now well established

that Ds(q) shows a minimum at the position, qm, of the maximum in the static structure

factor, S(q)1. This is the familiar de-Gennes narrowing - the initial diffusive decay of density

fluctuations is slowest at qm
22,23.

III. METHODS

A. Sample Preparation

The particles used in this work consist of a co-polymer core of methymethacrylate (MMA)

and Trifluorethylmetacrylate (TFEMA). The co-polymer TFEMA is added to enable refrac-

tive index matching in a single solvent (cis-decalin), and the suspension turbidity can be

controlled by changing the temperature. For these samples the index matching is suffi-

ciently good that multiple scattering is nearly zero in the range of scattering angles studied
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here. The particles are sterically stabilised by a thin coating of poly-12-hydroxystearic acid

(PHSA), approximately 10 nm thick. The particles used here are designated XL63, and have

a radius R = 185nm and a polydispersity of 8 − 9%24–26. The hard sphere-like interaction

between these particle suspensions is confirmed by the identification of the equilibrium phase

boundaries, i.e. the freezing and melting points.

Samples for DLS were prepared in 8mm path length, sealable scattering cells. Samples

for XPCS were transferred to quartz capillaries of 1.5mm diameter (Wolfgang Muller Glas

Technik, Berlin). A ball bearing was placed into the cell to facilitate the tumbling of the

particle suspension to ensure good mixing. The cells were sealed with araldite, ensuring

evaporation was insignificant over timescales of months. For some test measurements (see

below) DLS measurements were also carried out in the X-ray capillaries prior to or following

the X-ray measurements.

An ALV-6010 spectrometer is used for the DLS measurements. A HeNe laser of wave-

length 632.8 nm illuminates the sample, and an Avalanche Photon Detector (APD), located

on a goniometer, measures the scattered intensity at a specific scattering angle θ. The acces-

sible angular range is 15−150◦, corresponding to a q range of ∼ 3.8−28µm−1, encompassing

the peak in the structure factor at q ∼ 19µm−1.

The XPCS experiments were performed at the ID10a station of the Troika beamline

at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. A third

generation synchrotron provides partially coherent X-ray sources brilliant enough for XPCS

experiments. The standard ”coherent” set-up is based on two factors: a strong collimation

of the beam to match the transverse coherence length ξT of the TROIKA undulator source,

ξT = λL/s, where s is the source size and L the sample-to-source distance; and wavelength

selection using a standard Si(111) monochromator that provides the longitudinal coherence

length ξL = λ2/∆λ. At the ID10A beamline this routinely yields a 10x10 µm2 beamspot

at the sample with a 1µm longitudinal coherence length at 8 keV (λ = 1.555Å), well inside

the limit for path length differences in the present range of scattering vectors q4. Focusing

optics (compound refractive lenses) can be inserted into the beam to optimise the intensity

whenever the coherence conditions can be relaxed. In this configuration the ”coherent”

intensity on the sample can exceed 1010 photons/s. To match the speckle size a 0D detector

(scintillation counter) is placed behind a 100 µm aperture at a distance D = 2240mm behind

the sample. Measurements of the intensity fluctuations at small angles θ = d/D are achieved
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Figure 1. XPCS (open symbols) and DLS (lines) measurements of the intensity autocorrelation

functions for a dilute suspension (φ ∼ 0.01) of XL63 at the qR values indicated; (a) un-normalized:

(g(2)(q, τ)− 1) and; (b) normalized: (g(2)(q, τ)− 1)/c.

by translating the detector by a distance d perpendicular to the incident beam. A digital

autocorrelator, connected to the detector, allows the direct measurement of the IACF at

a specific scattering vector of amplitude q in the range ∼ 10 − 100µm−1. Capillaries were

mounted in an evacuated sample chamber with temperature control (T = 21◦C).

IV. RESULTS

Fig. 1 shows a comparison between the two techniques for a dilute suspension of hard

sphere particles for three values of qR. Fig. 1a shows the quantity (Eq. 2), which demon-

strates the lower intercept of XPCS (symbols) relative to DLS (lines) - this is a consequence

of the lower coherence of the X-rays relative to visible light. Fig. 1b shows |f(q, τ)|2, af-

ter normalization by the intercept, demonstrating that the two techniques give very similar

results, despite the difference in intercept.

Fig. 2 shows the ISFs for both techniques. As can be seen, the reduced intercept of the
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Figure 2. Calculated ISFs from XPCS (open symbols) and DLS (lines) measurements on dilute

suspensions at the qR values indicated. The inset shows DLS measurements carried out in DLS

cells (lines) and X-ray capillaries (open symbols) at the volume fractions indicated at a qR value

of 3.48 (near the peak of the structure factor).

XPCS measurements now becomes important, and leads to the non-zero baseline for two of

the scans. This is exacerbated by poor statistics, due to the fact that at low volume fractions

the scattering is very low. This could be improved by accumulating for longer, however in

the present case this was not attempted to limit the possibility of beam damage. Despite

this difference, the results of the initial decay are still consistent.

DLS measurements were typically carried out in large sample cells with ∼ 8mm path

lengths, whereas X-ray measurements must be carried out in small path length (∼ 1.5mm)

X-ray capillaries. To determine whether the use of capillaries causes any change in the

dynamics (eg due to shear alignment during loading), the inset in fig. 2 shows a comparison

between DLS measurements at two volume fractions in standard DLS cells and in X-ray

capillaries. The agreement seen here demonstrates that any difference observed between

DLS and XPCS results is not due to different preparation methods or sample cells.

Turning now to higher volume fractions, the measured ISFs from both techniques are

shown in fig. 3 for a range of volume fractions and scattering vectors. Fig. 3 shows that, in

general, there is reasonable agreement between the two techniques over the range of volume

fractions shown, though deviations can be seen, particularly where the statistics are such

that XPCS does not reach a zero baseline.

In order to compare the two techniques in more detail, we fit stretched exponential

7



 / 

Figure 3. ISF from XPCS (open symbols) and DLS (lines) at the volume fractions and qR values

indicated.

functions with the form f(q, τ) = exp[−(τ/τ ∗R)β)] by minimizing the Chi-square value using

a form of non-linear least squares (Levenberg-Marquardt algorithm) with Igor Pro software

from wavemetrics. DLS data are fit out to delay times of ??. Due to the increased noise,

XPCS data were fit over a small range, out to ??.

The results of this analysis are shown in fig. 4 for both DLS and XPCS data. Clearly

there is agreement between the two techniques at volume fractions of 0.30 and 0.48. At

a volume fraction of 0.42, XPCS gives characteristic times slightly larger than DLS and

β values slightly lower than DLS. However, the trends are clearly the same. The XPCS

data, although it is subject to higher statistical noise, gives reasonable results out to higher
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Figure 4. (a) Characteristic time τ∗R and (b) exponent β of stretched exponential fits to the ISF,

shown as functions of qR, at the volume fractions indicated. XPCS (filled symbols) and DLS (open

symbols connected by lines). Error bars are estimated from the fits. For the characteristic times,

the error in the Brownian time is also taken into account. Errors bars for DLS are smaller than

symbols.

qR values. Most importantly, the two techniques show the same variation with q. Having

established that XPCS and DLS data give consistent results we now turn to the question of

scaling.

These results show that the differences in scaling observed by Lurio et al. and Segre

and Pusey cannot be due to differences between the two techniques. Further, although the

samples can become damaged if exposed to the X-ray beam for too long, these results show

that, with care, damage can be avoided, suggesting that this is not an explanation for the

differences observed in previous measurements. However, the possibility of beam damage

provides an upper limit on how many runs can be made on each sample. By contrast, for

DLS, an arbitrarily large number of runs can be made to achieve the desired statistical

reliability. For the data studied here 50 runs of 1000s were routinely made. For this reason,

9



 / 

 / 

Figure 5. Long time (top) and short time (bottom) behaviour of the ISF determined using DLS

(left) and XPCS (right). The representation is the one used in Segre et al1. The linear behaviour

at short time allows the identification of a short time diffusion coefficient Ds(q).

having established the equivalence of the two techniques, the analysis below will be limited

to the DLS data.

Fig. 5 plots ln(ISF) vs q2τ at a volume fraction of 0.45 for a range of scattering vectors

for long (top) and short times (bottom). Note that range of delay times shown are similar

to those presented respectively in fig. 1a and fig. 3a of ref (1), and the noise on the DLS

data is very low, demonstrating that our data are comparable with those of Segre et al.

Segre et al. and then Lurio et al. estimated short and long time diffusion coefficients

by fitting straight lines to the initial and final decays of ln(ISF) vs q2τ , as shown in Fig.

5. Such analyses inherently assume, from the outset, that the fastest and slowest detected

density fluctuations are diffusive. This will be discussed below. The full identification of

the short and long time diffusive regimes requires the observation of plateaux in the time-

dependent diffusion coefficient D(q, τ) (eq. 5) at short and long times respectively. To avoid

duplicating unnecessary data, we present directly D(q, τ)/Ds(q), where Ds(q) were obtained
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Figure 6. Time-dependent diffusion coefficient D(q, τ)/Ds(q) normalised by the short-time diffusion

coefficient at qR values and volume fractions indicated from DLS experiments.

by identifying a plateau in D(q, τ) at short times. The results are shown in fig. 6 for

several scattering vectors at 6 volume fractions. The plateaux at short times suggest that

the assumption of the existence of a short time diffusion coefficient is reasonable. However,

this is not the case at long times, where there is no clear plateau in most cases, and thus

the long time diffusion coefficient cannot be unambiguously determined.

Despite the noise, our results are in qualitative agreement with fig 2a of ref (1). A scaling

of D(q, τ)/Ds(q) is reasonably observed at volume fraction φ ≥ 0.456 for qR values spanning

from 1.85 up to 4.91, even though noise is present at φ = 0.456. As the volume fraction is

increased the q dependence appears to decrease and the curves begin to converge. This trend

is clearest for the volume fractions of 0.456, 0.498 and 0.531. At 0.456 the curves converge,

11



within the noise, except for the lowest two qR values of 0.94 and 1.40. At a volume fraction

of 0.498, the data for qR = 1.85 begins to deviate, and at 0.531, in the metastable regime

(ie where crystallization will occur at sufficiently long times), the deviation of the lowest

three data sets becomes clearer. Interestingly however, while the deviation of the data for

the lowest scattering vectors becomes more pronounced as volume fraction increases, the

scaling for the scattering vectors around the peak becomes better. This scaling fails at long

times, as highlighted in the log-log representation shown in the insets of fig. 6 for the highest

volume fractions. By contrast with the results presented here, Segre et al. clearly observed a

plateau at long times at φ = 0.456 for all qR values spanning from 1.0 to 3.9 while we observe

such plateaux only at qR values near the peak of the structure factor. Thus we question the

existence of a long-time diffusive regime, and so a long-time diffusion coefficient DL(q), in

our system.

The numerical derivative required to calculate D(q, τ), introduces noise and makes it

difficult to identify a long time diffusive regime, where such a regime exists. An alternative

analysis which is not subject to this noise, and more clearly exposes the diffusive regimes,

is to calculate the width function27, defined by analogy with the mean square displacement

as:

w(q, τ) = −ln[f(q, τ)]/q2 (8)

which is shown as a function of delay time in fig. 7. The insets show the width function at

qm. In this representation diffusive regimes are identified where w(q, t) grows linearly with

delay time. This determination of diffusion does not require numerical differentiation of the

data (in contrast to fig. 6), and is insensitive to the time scale on which the ISF is plotted (in

contrast to fig. 5). Clearly, this representation shows unequivocally that short time diffusive

regimes are observed over several decades for all volume fraction and qR values probed.

However fig. 7 confirms that difficulties occur in identifying linear long-time behaviour at

some q values. In other words, the ISF and so the width function attain the experimental

noise floor before the anticipated long-time diffusive regime is observed. For the data shown

here, long-time diffusive behaviour can only be discerned at qm for φ ≥ 0.498, and this is

shown in the insets - the long time diffusive regime is not attained for other q values or for

lower volume fractions. This is consistent with recent experiments which showed that the

mean-squared distance particles must traverse, in order for density fluctuations to forget

the effects of packing constraints, is smallest at qm
13. A consequence of this is that we are
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Figure 7. Width function as function of delay time at qR values and volume fraction indicated.

Lines and dashed lines are linear fits of log[w(q, τ)] = log(Ds(q)) + log(τ) respectively at short and

long times. Inset shows the width function at the nearest qR values of the peak of structure factor

for the corresponding volume fraction.

unable to directly conclude whether or not the ratio Ds/DL is independent of q, as found

by Segre et al.1, a result which was disputed by Lurio et al.2.

Returning to the scaling behaviour, as φ is increased, D(q, τ)/Ds(q) seems to scale better

in the first decades even though the last decades shows an increasing q-dependence once

φ ≥ 0.498. To quantify this observation, we choose three fixed delay times, and plot in fig.

8 the standard deviation of the spread of D(q, τ)/Ds(q) values at these times as a function

of volume fraction. The scaling is clearly observed via the convergence of this quantity as

volume fraction is increased. Of course the decay of the ISF shifts to longer delay times as
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Figure 8. Standard deviation of D(q, τ/τB)/Ds(q) at fixed values of τ/τB indicated from DLS

experiments. The length of the vertical lines corresponds to range of values over the qR range

[2.29, 4.91].

Figure 9. Inverse of the short time diffusion coefficient expressed in term of the free diffusion

coefficient D0.

volume fraction increases, so this analysis is limited. However it clearly demonstrates the

scaling as volume fraction increases.

Keeping in mind that the determination of the plateau at long times is ambiguous, par-

ticularly at low volume fractions, fig. 9 shows the qR dependence of the inverse of the

short time collective diffusion coefficient. Clearly Do/Ds scales with the structure factor in

agreement with previous results eg Segr and Pusey1.

We stated above that the determination of the long time diffusion coefficient is prob-

lematic. In order to remove the ambiguity associated with the measurement of a long time

14



Figure 10. Ratio of Dx(q)/Ds(q) as a function of qR at the volume fractions indicated. Each

graph corresponds to a specific τx value as indicated. Within the noise there is no real indication

of scaling between short and long time behaviour.

plateau, we simply determine the apparent diffusion coefficients D(q, τx) at several delay

times τx. The ratio D(q, τx)/Ds(q) is then plotted in fig. 10 for several volume fractions. At

the lowest volume fraction measured there is some hint of scaling only at the early times but

clearly not at long times (∼ plateau). As the volume fraction increases any hint of scaling

disappears, and the ratio never demonstrates q-independence at any delay time.

Finally, Fig. 11 shows D(q, τ)/Ds(q) near the peak in the structure factor for several

volume fractions. This graph confirms that at the peak it is still possible to define a diffusive

regime at long times (see also fig. 7f). Of more interest is the volume fraction dependence of

the rate at which the behaviour deviates from diffusive. At τ/τB = 100(after three decades

in time) D(q, τ)/Ds(q) has dropped by almost an order of magnitude at a volume fraction

of 0.549, whereas D(q, τ)/Ds(q) remains approximately 1 at a volume fraction of 0.213. So,

as the volume fraction increases, the system deviates more quickly from diffusive behaviour,

even though the dynamics are slower.
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Figure 11. Time-dependent diffusion coefficient, normalised to the short-time diffusion coefficient,

as a function of delay time for several volume fractions at qR = 3.57 (around the peak of the

structure factor for higher volume fractions).

V. DISCUSSION

The first part of the results compared DLS and XPCS results on identical samples. As

far as we are aware, this is the first comprehensive comparison between DLS and XPCS on

concentrated hard sphere samples. The results demonstrate a number of things. Within

statistical errors, the ISFs determined from DLS and XPCS agree very well. The main

limitation of XPCS is that good sample statistics are much harder to obtain, partly due

to the lower coherence, and partly due to beam damage, which limits how long statistics

can be accumulated on a particular sample. This is particularly true for the higher volume

fractions, where restricted diffusion means individual particles are exposed to the X-ray

beam for long periods of time. In order to improve the statistics at high volume fractions,

it would be desirable to have the samples mounted on a translation stage so that a series

of short measurements can be made at different positions in the sample to limit sample

damage. Such studies are currently being planned.

Despite this, the results confirm that careful use of XPCS can provide data of similar

quality to DLS. There are a number of situations where XPCS would be preferable to DLS:

first, where particles are smaller than R ∼ 120nm, where the structure factor peak cannot

be accessed using DLS; second, for samples where multiple scattering is significant; and

finally, where dynamics need to be studied at higher q values as shown in fig. 4 (though not

explored here, even higher values are possible using XPCS).

16



We turn now to the results of the scaling analysis. First, we find that Ds(q) scales with

S(q), an effect knows as DeGennes narrowing. Second, we find that the long time diffusion

coefficient cannot be defined away from the peak for our system, so the scaling of the ratio

Ds/DL observed by Segr and Pusey1, but not by Lurio et al.2, cannot be confirmed. Third,

we do observe a scaling behaviour of the time-dependent diffusion coefficient at high volume

fraction. This result agrees with Segr and Pusey but is not observed by Lurio et al.

As the system under study is a hard sphere system very similar to the system used by

Segr and Pusey, (though with higher polydispersity) the difference in the results is puzzling.

One possible explanation is in the way the long time diffusion coefficient is determined. Our

results have shown that the determination of this quantity is problematic, and according to

our analysis, it cannot be defined away from the structure factor peak. Inspection of Fig.

11, for example, shows that a clear plateau can be identified at early times (Ds), but that

a plateau is much less well defined at long times. It is possible that the differences between

our results and those of Segr and Pusey are related to the determination of this property.

The identification of a long-time diffusive regime for the collective dynamics (through

the width function, fig. 7 is clearly observed around qm but not at other q values. So the

following question can be asked: does a long-time diffusive regime exist for all q? We consider

the quantity 〈∆r2(τ cm(q))〉, which corresponds to the mean squared distance a particle has

to move for the number density fluctuations to forget excluded volume effects - where 〈∆r2〉

and τ cm(q) are respectively the time-dependent mean square displacement and the delay

time at the crossover between the fast and slow processes. This quantity was previously

introduced and measured for the same particle suspensions13. At φf and qm, the quantity

〈∆r2(τ cm(qm))〉 is smaller by a factor of ∼ 5 compared to 〈∆r2(τ cm(q))〉 at qR=1.0. This

quantifies the difficulty in identifying the long-time diffusive behaviour from the coherent

ISF at q vectors away from the peak of the structure factor, simply because particles are

unable to move the distances necessary for the number density fluctuations to forget packing

constraint effects.

More generally, the results summarized in fig. 11 show that the evolution of the time-

dependent diffusion coefficient changes dramatically with volume fraction. At low volume

fractions the transition between the two takes a long time. However as volume fraction

increases the short and long time processes quickly separate, as more and more particles

become trapped in neighbour cages. The magnitude of this separation increases, and occurs
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at shorter times, as the dynamics become slower.

VI. CONCLUSIONS

We present an extensive study of concentrated colloidal hard sphere suspensions using

both DLS and XPCS, as functions of volume fraction and scattering vector. A scaling be-

haviour, found by Segre et al., is observed over several decades in time but not in the long

time regime where significant q-dependence is observed for higher volume fractions. While

the short-time diffusion regimes clearly exist at all volume fractions and scattering vectors,

long-time diffusive regimes are only observed near the peak of the structure factor at high

volume fractions. Thus the existence of a collective long-time diffusive regime is rather ques-

tionable, even though an apparent linear regime is observed in the common representation

ln(ISF) vs q2τ used by both Lurio et al2. and Segre and Pusey1. By interpreting the quan-

tity 〈∆r2(τ cm(q))〉, measured by van Megen et al.13, we explain the absence of a long-time

diffusive regime by simply arguing that particles are unable to move the distances necessary

for the number density fluctuations to forget packing constraint effects during accessible

time scales.
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