2,613 research outputs found

    Extraordinary behavioral entrainment following circadian rhythm bifurcation in mice.

    Get PDF
    The mammalian circadian timing system uses light to synchronize endogenously generated rhythms with the environmental day. Entrainment to schedules that deviate significantly from 24 h (T24) has been viewed as unlikely because the circadian pacemaker appears capable only of small, incremental responses to brief light exposures. Challenging this view, we demonstrate that simple manipulations of light alone induce extreme plasticity in the circadian system of mice. Firstly, exposure to dim nocturnal illumination (<0.1 lux), rather than completely dark nights, permits expression of an altered circadian waveform wherein mice in light/dark/light/dark (LDLD) cycles "bifurcate" their rhythms into two rest and activity intervals per 24 h. Secondly, this bifurcated state enables mice to adopt stable activity rhythms under 15 or 30 h days (LDLD T15/T30), well beyond conventional limits of entrainment. Continuation of dim light is unnecessary for T15/30 behavioral entrainment following bifurcation. Finally, neither dim light alone nor a shortened night is sufficient for the extraordinary entrainment observed under bifurcation. Thus, we demonstrate in a non-pharmacological, non-genetic manipulation that the circadian system is far more flexible than previously thought. These findings challenge the current conception of entrainment and its underlying principles, and reveal new potential targets for circadian interventions

    Submicron active-passive integration for InP-based membranes on silicon

    Get PDF
    The high vertical index contrast and the small thickness of thin InP-based membrane structures bonded with BCB on Silicon allow the realization of very small devices. To make photonic integrated circuits with both passive and active components in these membranes, active-passive integration on a small scale is essential. In this paper we will present our results on sub-micrometer active areas for membrane applications

    Prone sleeping and SUDEP risk: The dynamics of body positions in nonfatal convulsive seizures

    Get PDF
    BACKGROUND: Most victims of sudden unexpected death in epilepsy (SUDEP) are found prone with signs suggestive of an unwitnessed convulsive seizure (CS). Prone sleeping has been proposed as a risk factor for SUDEP. Little is known, however, about the change of body position during the course of CSs. METHODS: We retrospectively reviewed video-EEG data and assessed body positions during the course of CSs, until there was a physical interaction by nursing staff with the subject. RESULTS: We identified 180 CSs in 90 individuals. In 16 of the 180 CSs (9%), the subject started in or turned to the prone position. Of the seven CSs that started in the prone position, three turned to a lateral position during the CS. In 13 CSs, the subject was in prone position at time of nursing intervention; nine (69%) of these started in a nonprone position. DISCUSSION: Our data suggest that the prone position occurs infrequently in closely supervised nonfatal CSs, a notable contrast to the number of victims of SUDEP found prone. Whether prone sleeping prior to CSs increases SUDEP risk, however, remains speculative, as body position during the course of a CS appeared to be dynamic

    Oxidation of AlInAs for current blocking in a photonic crystal laser

    Get PDF
    To make an electrically pumped photonic crystal membrane laser is a challenging task. One of the problems is how to avoid short circuiting between the p- and n-doped parts of the laser diode, when the membrane thickness is limited to 200-300nm. We propose to use the oxide of AlInAs to realize a current blocking function. In this way, based on submicron selective area re-growth, we aim for electrically injected photonic crystal lasers with high output power, small threshold currents and low power consumption. Here results are presented on the oxidation of AlInAs. The results show that it is feasible to use the oxide of AlInAs for current blocking in an InP-based membrane photonic crystal laser

    The tail of the contact force distribution in static granular materials

    Get PDF
    We numerically study the distribution P(f) of contact forces in frictionless bead packs, by averaging over the ensemble of all possible force network configurations. We resort to umbrella sampling to resolve the asymptotic decay of P(f) for large f, and determine P(f) down to values of order 10^{-45} for ordered and disordered systems in two and three dimensions. Our findings unambiguously show that, in the ensemble approach, the force distributions decay much faster than exponentially: P(f) ~ exp(-f^{\alpha}), with alpha \approx 2.0 for 2D systems, and alpha \approx 1.7 for 3D systems.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    Extremely uniform lasing wavelengths of InP microdisk lasers heterogeneously integrated on SOI

    Get PDF
    A standard deviation in lasing wavelength lower than 500pm is characterized on nominally identical and optically-pumped microdisk lasers, heterogeneously integrated on the same SOI circuit. This lasing wavelength uniformity is obtained using electron-beam lithography

    Power-Law Scaling in the Internal Variability of Cumulus Cloud Size Distributions due to Subsampling and Spatial Organization

    Get PDF
    In this study, the spatial structure of cumulus cloud populations is investigated using three-dimensional snapshots from large-domain LES experiments. The aim is to understand and quantify the internal variability in cloud size distributions due to subsampling effects and spatial organization. A set of idealized shallow cumulus cases is selected with varying degrees of spatial organization, including a slowly organizing marine precipitating case and five more quickly organizing diurnal cases over land. A subdomain analysis is applied, yielding cloud number distributions at sample sizes ranging from severely undersampled to nearly complete. A strong power-law scaling is found in the relation between cloud number variability and subdomain size, reflecting an inverse linear relation. Scaling subdomain size by cloud size yields a data collapse across time points and cases, highlighting the role played by cloud spacing in controlling the stochastic variability. Spatial organization acts on top of this baseline model by increasing the maximum cloud size and by enhancing the variability in the number of smallest clouds. This reflects that the smaller clouds start to live on top of larger-scale thermodynamic structures, such as cold pools, which favor or inhibit their formation. Compositing all continental cumulus cases suggests the existence of a prototype diurnal time dependence in the spatial organization. A simple stochastic expression for cloud number variability is proposed that is formulated in terms of two dimensionless groups, which allows objective estimation of the degree of spatial organization in simulated and observed cumulus cloud populations

    Factors Controlling Stratocumulus Cloud Lifetime Over Coastal Land

    Get PDF
    The breakup of stratocumulus clouds over coastal land areas is studied using a combination of large-eddy simulations (LESs) and mixed-layer models (MLMs) with a focus on mechanisms regulating the timing of the breakup. In contrast with stratocumulus over ocean, strong sensible heat flux over land prevents the cloud layer from decoupling during day. As the cloud thins during day, turbulence generated by surface flux becomes larger than turbulence generated by longwave cooling across the cloud layer. To capture this shift in turbulence generation in the MLM, an existing entrainment parameterization is extended. The MLM is able to mimic cloud evolution for a variety of Bowen ratios, but only after this modification of the entrainment parameterization. Cloud lifetime depends on a combination of the cloud-top entrainment flux, the Bowen ratio of the surface, and the strength of advection of cool ocean air by the sea breeze. For dry land surface conditions, the authors’ MLM suggests a breakup time a few hours after sunrise. For relatively wet land surface conditions, the cloud layer briefly breaks into partly cloudy conditions during midday, and the stratocumulus cloud reforms in the evening

    Factors Controlling Stratocumulus Cloud Lifetime Over Coastal Land

    Get PDF
    The breakup of stratocumulus clouds over coastal land areas is studied using a combination of large-eddy simulations (LESs) and mixed-layer models (MLMs) with a focus on mechanisms regulating the timing of the breakup. In contrast with stratocumulus over ocean, strong sensible heat flux over land prevents the cloud layer from decoupling during day. As the cloud thins during day, turbulence generated by surface flux becomes larger than turbulence generated by longwave cooling across the cloud layer. To capture this shift in turbulence generation in the MLM, an existing entrainment parameterization is extended. The MLM is able to mimic cloud evolution for a variety of Bowen ratios, but only after this modification of the entrainment parameterization. Cloud lifetime depends on a combination of the cloud-top entrainment flux, the Bowen ratio of the surface, and the strength of advection of cool ocean air by the sea breeze. For dry land surface conditions, the authors’ MLM suggests a breakup time a few hours after sunrise. For relatively wet land surface conditions, the cloud layer briefly breaks into partly cloudy conditions during midday, and the stratocumulus cloud reforms in the evening
    • …
    corecore