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ABSTRACT

In this study, the spatial structure of cumulus cloud populations is investigated using three-dimensional 
snapshots from large-domain LES experiments. The aim is to understand and quantify the internal vari­
ability in cloud size distributions due to subsampling effects and spatial organization. A set of idealized 
shallow cumulus cases is selected with varying degrees of spatial organization, including a slowly organizing 
marine precipitating case and five more quickly organizing diurnal cases over land. A subdomain analysis is 
applied, yielding cloud number distributions at sample sizes ranging from severely undersampled to nearly 
complete. A strong power-law scaling is found in the relation between cloud number variability and 
subdomain size, reflecting an inverse linear relation. Scaling subdomain size by cloud size yields a data 
collapse across time points and cases, highlighting the role played by cloud spacing in controlling the 
stochastic variability. Spatial organization acts on top of this baseline model by increasing the maximum 
cloud size and by enhancing the variability in the number of smallest clouds. This reflects that the smaller 
clouds start to live on top of larger-scale thermodynamic structures, such as cold pools, which favor or 
inhibit their formation. Compositing all continental cumulus cases suggests the existence of a prototype 
diurnal time dependence in the spatial organization. A simple stochastic expression for cloud number 
variability is proposed that is formulated in terms of two dimensionless groups, which allows objective 
estimation of the degree of spatial organization in simulated and observed cumulus cloud populations.

1. Introduction

Recent advances in supercomputing have introduced a 
‘‘gray zone’’ in the representation of cumulus convection 
in general circulation models (GCMs), in which this 
physical process is getting partially resolved (Wyngaard 
2004). Recent studies have defined the gray zone as the 
range of resolutions within which the subgrid and re­
solved contribution to turbulence and transport are of 
the same order of magnitude (e.g., Dorrestijn et al. 
2013; Honnert et al. 2011). Existing parameterization 
schemes, built on the assumption that cumulus pop­
ulations are fully sampled in the GCM grid box, often

Θ Denotes content that is immediately available upon publica­
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lack the scale awareness and scale adaptivity to con­
ceptually and practically deal with this situation. How 
to best achieve this is still an open research question.

Research into the spatial structure of cumulus cloud 
populations goes back decades (e.g., Cahalan and Joseph 
1989; Sengupta et al. 1990; Nair et al. 1998) but has re­
cently intensified because of the arrival of the gray zone 
problem. A natural way of characterizing the scale 
dependence within a cumulus population is the size 
distribution of a cloud field, which has been scientifi­
cally established for many cloud regimes using a large 
variety of instrumentation (e.g., Plank 1969; Raga et al. 
1990; Benner and Curry 1998; Zhao and Di Girolamo 
2007; Yuan 2011) and finescale cloud-resolving simu­
lation (e.g., Neggers et al. 2003; Rieck et al. 2014; Senf 
et al. 2018). A characteristic feature of the size density 
of cumulus cloud number [a cloud size density (CSD)] 
is its shape, which has been described by lognormal, 
exponential, and power-law functions. These shapes 
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are argued to reflect the underlying physical-dynamical 
processes of cloud formation, interaction, and subcritical 
percolation (Newman 2005; Cohen and Craig 2006; Ding 
et al. 2014; Garrett et al. 2018). The size range covered by 
the distribution has been found to differ between ma­
rine and continental cloud populations (Sakradzija and 
Hohenegger 2017). Over land, the maximum size of 
the distribution exhibits a distinct diurnal dependence. 
With many studies relying on finescale simulations of 
cumulus cloud populations, the confrontation of sim­
ulated and observed cumulus populations has recently 
become an important focus point. Both area-covering 
measurements (Kassianov et al. 2005) and vertically 
pointing measurements (Lareau et al. 2018) have started 
to provide a wealth of new information about cumulus 
cloud populations at high resolutions and frequencies.

Building on these new results and insights, a new class 
of convection schemes has recently emerged in which the 
transport is explicitly formulated in terms of discretized 
CSDs (Wagner and Graf 2010; Park 2014; Neggers 2015). 
In essence, these schemes adopt the spectral approach in 
convective modeling as first proposed by Arakawa and 
Schubert (1974). Compared to bulk convection schemes, 
the CSD is a new variable that requires closure, concerning 
both its functional form and its range. Differences exist 
among schemes in how the CSD is reconstructed. But a 
general benefit is that the CSD is in general well observ­
able, allowing such models to be constrained by both ex­
isting and new datasets. Furthermore, scale awareness is 
by definition present at the foundation of the scheme 
(Neggers 2015). The reconstructed CSD can be size fil­
tered, which introduces scale adaptivity in the parame­
terized convective transport and clouds (Brast et al. 2018).

A complicating factor is that the CSD is not a global 
constant and exhibits both external and internal vari­
ability. External variability arises from various sources 
such as large-scale synoptic conditions or surface prop­
erties (Rieck et al. 2014). In contrast, internal variability 
arises because of spatial sampling issues. Given a well- 
defined CSD reflecting a cloud population covering an 
infinitely large area, a limited spatial sampling leads to 
stochastic variability (e.g., Nair et al. 1998; Cohen and 
Craig 2006). This situation applies to convective mod­
eling in the gray zone, in which the grid box has become 
too small to include the full population. In CSDs di­
agnosed in LES realizations of a relatively small domain, 
this stochastic signal is sometimes present at the largest 
cloud sizes, which are often poorly sampled (Neggers 
et al. 2003). The spatial organization in a cloud field can 
add to this stochastic variability by introducing pertur­
bations in the cloud populations on scales much larger 
than the boundary layer depth (e.g., Seifert and Heus 
2013). Physical-dynamical processes that drive spatial 

organization include cold pool formation (e.g., Schlemmer 
and Hohenegger 2014) and oscillations (Sakradzija et al. 
2015; Feingold et al. 2017).

In recent years, super-large-domain LES has become 
computationally feasible (Khairoutdinov and Randall 
2006; Satoh et al. 2008; Heinze et al. 2017) and has 
offered new ways to study the CSD and its variability. 
The availability of high spatial resolution in combination 
with a large domain size yields cloud size distributions that 
can freely form and evolve across a range of scales that is 
less and less artificially constrained at both ends. The large 
domain allows more complete sampling of the cumulus 
population, as well as better coverage of the rarely oc­
curring largest clouds. With the cumulus clouds still re­
solved, the ever-larger domain of the simulation also 
allows mesoscale fluctuations to form naturally and start 
to affect the CSD. The opportunities created by super­
large LES to investigate the behavior of cumulus CSDs 
and their interaction with mesoscale organization have 
only recently begun to be explored (e.g., Senf et al. 2018).

The goal of this study is to use large-domain simula­
tions to investigate and quantify the internal variability 
in a cumulus CSD. We ask how this variability depends 
on (i) the domain size of the analysis and (ii) the degree 
of spatial organization within the cloud population. 
The aim is to work with domain sizes large enough to 
approach full sample size when diagnosing the CSDs. 
While this study is exclusively limited to shallow cu­
mulus convection, two distinctive convective regimes 
are investigated. The first is a slowly organizing marine 
cumulus case based on the Rain in Cumulus over the 
Ocean (RICO) field campaign (Rauber et al. 2007). 
The second regime reflects continental summertime 
conditions at the Southern Great Plains (SGP) site of 
the Atmospheric Radiation Measurement (ARM; Stokes 
and Schwartz 1994) program. A subdomain analysis is 
performed for all fields to quantify the impact of sub­
sampling on the CSD. The difference in organization 
speed between the two regimes then provides insight 
on how this process affects the internal variability of shal­
low cumulus CSDs. The implications of the obtained 
results for our understanding of cumulus populations in 
general and for stochastic cumulus parameterization in 
the gray zone in particular will be discussed.

2. Method

a. Large-eddy simulations

This study makes use of LES results for two well- 
defined shallow cumulus regimes, in which the pace 
of the spatial organization differs considerably. The first, a 
slowly organizing cloud regime, reflects marine subtropical 
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subsidence conditions as observed during the RICO field 
campaign (Rauber et al. 2007). The spatial organization 
in this case is related to warm precipitation processes, 
producing cold pools with low cloud mass that are 
separated by convergence lines where clouds tend to 
congregate. The spatial organization in this case is a 
slow process, taking multiple days. The second, faster 
organizing cloud regime reflects diurnal cycles of con­
tinental shallow cumulus at the ARM SGP site. For this 
regime, five day-long cases are chosen, which are all 
part of the archive of simulations for the ARM SGP site 
in 2016 generated by the LES ARM Symbiotic Simula­
tion and Observation Workflow (LASSO; Gustafson 
et al. 2017b). The cases include 18 May, 19 and 25 June, 
16 July, and 18 August 2016 (hereinafter referred to as the 
20160518, 20160619, 20160625, 20160716, and 20160818 
cases). These days are selected because they best reflect 
the prototype view of diurnal cycles of shallow con­
vection, with most daytime cloudiness associated with 
surface-driven convective clouds and with more or less 
clear-sky conditions before and afterward.

The LES experiments for these six cases have already 
been described in detail in the literature, and only the 
details relevant for this study will be summarized here. 
The RICO composite shallow cumulus case (vanZanten 
et al. 2011) is simulated using the university of 
California, Los Angeles, LES (uCLA-LES) code, as 
described in detail by Seifert and Heus (2013); their 
simulations are also used in this study. The simulated do­
main size is Dx X Dy X Dz = 51.2 km X 51.2 km X 4.0 km. 
A period of 48 h is simulated, considered long enough 
for the spatial organization to take place. Full three­
dimensional fields are stored at 8-h intervals. The 
LASSO cases have been resimulated with the MicroHH 
code (van Heerwaarden et al. 2017), using the WRF- 
based prescribed large-scale forcings and boundary con­
ditions that are part of the LASSO Alpha 2 dataset 
(Gustafson et al. 2017a). Compared to the standard 
LASSO simulations, the horizontal domain size is ex­
tended to 25.6 km in the resimulations in order to maxi­
mize the domain range available for the subdomain 
analysis of CSDs.

Although two different LES codes are used, the ex­
periment setups share some important aspects. A spatial 
resolution of 25 m X 25 m X 25 m is always applied, as 
is adaptive time stepping. Both the UCLA-LES and 
the MicroHH codes apply the Smagorinsky scheme for 
subgrid transport of momentum, energy, and heat, and 
both make use of the warm-cloud double-moment mi­
crophysics scheme of Seifert and Beheng (2001). Hori­
zontally periodic boundary conditions are applied, as well 
as a sponge layer in the top third of the domain to dampen 
any gravity waves. A prescribed surface temperature is 

used in both the RICO and LASSO cases, the only dif­
ference being the presence of a diurnal cycle in the latter.

The evolution of the simulated cloud population for 
the RICO case is illustrated in Fig. 1, showing the ver­
tically projected cloud mask at each storage time point. 
The cloud field at the first two time points still looks 
more or less homogeneously distributed, but increasingly, 
the cloud field becomes more organized, with large 
cloud structures appearing after about one day of sim­
ulation associated with cold pool development (Seifert 
and Heus 2013). Figure 2 shows the same for the LASSO 
20160518 case, revealing the distinct diurnal evolution of 
the cloud population. The spacing between the largest 
clouds increases during the day, likely reflecting the 
continuous ongoing deepening of the boundary layer 
that is typical of such diurnal cycles (Brown et al. 2002; 
Zhang et al. 2017). Organization in the cloud field be­
comes apparent during the final period, with small 
clouds increasingly clustering around the larger ones, 
being separated by large areas without any cloud mass. 
This may be related to the decay of the largest clouds at 
the end of the day, when the surface forcing of the tur­
bulence weakens.

To provide further confidence in the realism of the 
simulations, the LES cloud cover for the five LASSO 
cases is compared to two ARM observational products. 
The Active Remote Sensing of Clouds (ARSCL) value- 
added product (Clothiaux et al. 2000, 2001) combines 
lidar and radar measurements, while the total sky im­
ager (TSI; Kassianov et al. 2005) retrieves cloud cover 
from wide-angle imagery. The comparison for the five 
cases is shown in Fig. 3, only showing daytime hours. 
While some differences exist between the two mea­
surements, they agree reasonably well on the general 
evolution and amplitude of the cloud cover. The model 
does reproduce these trends; however, the amplitude 
seems to be a bit underestimated. This slight bias has 
been revealed in other recent LES evaluation studies at 
supersites (Schalkwijk et al. 2015; Zhang et al. 2017). In 
addition, on 18 May and 18 August, the LES seems to 
underestimate cloud cover in the morning, which we 
speculate is due to either (i) high-altitude cloudiness 
or (ii) spinup effects. Despite these minor shortcomings, 
the results do suggest that the experiment setup captures 
the prototype diurnal variation in cloudiness present 
in the observations to a reasonable degree, as well as its 
modulation due to large-scale forcing. This agreement 
suggests the simulations are representative of nature and 
justifies their use for subsequent cloud studies.

b. Deriving cloud size distributions

Cloud size distributions can be derived in many ways, 
involving choices concerning what defines a cloud and
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Fig. 1. Vertically projected cloud masks for the six time points during the LES of the RICO case that are considered in this study. The 
domain size shown is 51.2 km by 51.2 km. A grid point is masked (black) when any condensate exists in the vertical column.

its size. In this study, a simple definition is adopted, to be 
applicable to both observed and simulated cloud pop­
ulations, and that allows the use of past data records as 
much as possible. The first simplification is to disregard 
cloud life cycles by only analyzing standalone instanta­
neous three-dimensional fields. Often, the time fre­
quency of observations of cloud populations is simply 
too low to allow detection of cloud life cycle properties. 
Also, we hypothesize that the CSD internal variability 
should already be detectable in instantaneous snapshots. 
The second choice is to use the presence of any cloud 
condensate mass to label a grid box as cloudy or non- 
cloudy. This allows the analysis to be used with any LES, 

no matter how complex its representation of cloud mi­
crophysics. The third choice is to define cloud size as the 
square root of the projected area fraction of the object 
defined on the 3D grid. This choice is made to allow 
comparison to previous CSD studies, which often relied 
on this definition.

In practice, the ‘‘cusize’’ algorithm is applied as de­
scribed by Neggers et al. (2003) to investigate diurnal 
cycles in the CSD. Given a 3D field of cloud mask, first, 
all objects are identified that consist of neighboring 
cloudy grid boxes and that are separated by clear air. 
The size of each object is then established as the square 
root of its projected cloud cover. These are then sorted

Fig. 2. As in Fig. 1, but for the cloud mask for six time points during the LASSO 20160518 case. The domain size is 25 km by 25 km.
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Fig. 3. Simulated and observed total cloud cover for the five 
LASSO cases investigated in this study. TSI is an estimate of the 
total sky cover and is only available during daytime, while ARSCL 
represents cloud cover as diagnosed over only the lowest 5 km. The 
gray bars denote the period before sunrise and after sunset.

into a histogram of cloud number N(l), yielding the CSD 
N(l) defined as

N (l) = N(l) dl-1, (1)

with dl the width of the size bins. As illustration, the 
resulting size densities of cloud number in log-log 
space for the RICO case and the LASSO 20160518 
case are shown in Fig. 4. Each line represents a single 
instantaneous 3D field. The typically observed behavior 

that cumulus cloud occurrence sharply decreases with 
size is also evident in these cases, as expected. The 
RICO case shows power-law scaling in the size range 
l < 300 m, above which the CSD decreases more rap­
idly with size. The first cloudy hours in the LASSO case 
also have this shape, but as time progresses, the slope of 
the CSD becomes more constant across the covered 
size range. Note that a higher vertical position in 
the frame corresponds to a larger number of clouds, 
because of the use of nonnormalized densities. In the 
LASSO case, cloud number strongly increases across the 
spectrum after cloud onset and decreases again toward 
the end of the day. What both cases share is the increasing 
spread on the vertical axis (number density) toward the 
larger sizes, in the right tail. This spread, referred to as 
CSD internal variability or stochastic variability, is the 
main focus of this study.

c. Subdomain analysis

The subdomain analysis method used by Dorrestijn 
et al. (2013) to investigate the scale dependence of tur­
bulent transport is applied here to cloud number N. To 
this purpose, the full horizontal LES domain Dx X Dy is 
first subdivided into small square subdomains of hori­
zontal size L0 = 1.6 km (L is used to indicate subdomain 
size, referring to the length of the edge of the square 
object). This basic size was chosen to still contain a 
sufficient number of grid points on a horizontal slice 
(642) and to be large enough to contain the largest cloud 
but, on the other hand, to still be significantly smaller 
than the typical neighbor spacing of large cumulus 
clouds (Joseph and Cahalan 1990). Also, with this value 

Fig. 4. Cloud number densities N for (a) the RICO case and (b) the LASSO 20160518 case, as derived from the 
full-domain LES fields. Each line represents a single instantaneous 3D cloud field, with t its time point in hours. The 
clouds were sorted in histograms using a constant bin width of 25 m, matching the LES resolution.
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of L0, the full domain size is exactly covered for both the 
RICO and LASSO cases.

The next step is to define a set of bigger square sub­
domains of size L that consist of multiple adjacent 
smallest subdomains L0:

(2)

with n  {1, 2, 4, 8, 16} for LASSO and n  {1, 2, 4, 8, 
16, 32 g for RICO. This yields a number of K subdomains 
of size L, with

(3)

In each of these K subdomains, indexed by subscript k, 
the number of clouds N of size l are then counted, in­
dicated as Nk(L, l). In this process, no cloud is counted 
twice; in other words, should a cloud object cross sub­
domain boundaries, then the cloud is included in the 
count for the subdomain in which it is identified first. 
As a result, the sum of Nk over all subdomains always 
exactly equals the total cloud number counted for the 
full domain.

With Nk known, this finally allows the calculation of 
the mean cloud number per subdomain N(L, l), as well 
as the associated standard deviation s(L, l):

(4)

(5)

Equation (5) expresses how variable the number of 
clouds of a certain size l is when considering subdomains 
of size L. The variable σ is thus a measure of the CSD 
internal variability, visible in Fig. 4 as the vertical spread 
in the right tail of the CSD. In practice, it is only in­
terpreted for K ≥ 4 to ensure statistical significance. It is 
important to note that this definition of σ accounts for 
the impact of no clouds occurring in a subdomain (i.e., 
Nk = 0). This has the potential to significantly increase 
σ in situations when the subdomain size is of the same 
order of magnitude as the cloud spacing, as will be 
illustrated later.

3. Results

a. Number densities in subdomains

Figure 5 shows a subdomain analysis of the size den­
sity of the number of clouds (the number density) of the 

first 3D snapshot from the RICO case. By visual com­
parison in Fig. 1 this cloud field shows the lowest degree 
of spatial organization, so that the CSD internal vari­
ability will be predominantly due to subsampling. Un­
like the CSDs as shown in Fig. 4 the data are now plotted 
not as histograms but as two-dimensional PDFs in 
(l, N*) space. The normalized size density for sub­
domains N*(L, l) is obtained by dividing N(L, l) by the 
average total number of clouds in a subdomain of size L:

Normalized number densities are commonly used in 
studies of cumulus cloud population, an advantage being 
that, per definition, the integral of N* with l always 
adds up to 1. As a result, in (l, N*) space, the vertical 
position of the density is preserved for subdomain size, 
which facilitates their comparison. The two-dimensional 
PDF is created by sorting the number densities N* (L, l) 
for all subdomains of size L at a given l onto a 100-bin 
histogram on the vertical axis, covering the range shown 
in Fig. 5. For a given cloud size l, the shading thus reflects 
the relative probability of occurrence of a value of N* 
among the subdomains, with red marking the value that 
occurs most. Two lines are added for reference. The 
curved line reflects a power-law exponential fit on the full 
domain CSD as proposed by Ding et al. (2014). The 
horizontal line indicates the value of a single cloud 
occurrence in the average subdomain, which is con­
stant for l because of the use of a constant linear bin 
width dl in the calculation of the CSD. As a result of 
the use of the normalized number density on the y axis, 
the single cloud value increases with smaller L because 
of the decreasing number of clouds present in the 
subdomain.

Figure 5a shows the analysis for n = 32 so that the 
subdomain equals the full domain. As a result, the 
plotted data are equivalent to that shown in Fig. 4a. A 
few aspects catch the eye. First, the power-law expo­
nential fit reproduces the shape of the CSD in this case 
to a reasonable degree. Second, the horizontal spacing 
in the left tail of the PDF reflects the horizontal dis­
cretization of the LES, allowing only a few specific 
cloud sizes. Third, the vertical spread in the data in­
creases toward the largest sizes, which is an expres­
sion of an increase in the CSD internal variability. 
Also, the data tend to organize along horizontal lines, 
with the lowest line of points (with lowest N* value) 
coinciding with the single cloud line. This implies 
that only one cloud object of this size is present in 
the domain.
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Fig. 5. The normalized cloud number density N* for the first RICO snapshot (t = 8 h) calculated for various subdomain sizes. The 
densities are plotted as two-dimensional PDFs in (l, N*) space. The shading indicates the probability of occurrence among the sub­
domains, normalized such that the most frequently occurring value of N* at a given value of l has a value of 1 (red). The curved dotted line 
is the least squares fit of a power-law exponential function to the full domain CSD, while the horizontal dotted line indicates the value of a 
single cloud in the average subdomain, calculated as [∑lN(L, l)dl] -1 .

The following panels show the analysis for decreasing 
subdomain size L,for n  {16, 8, 4, 2, 1g. With decreasing 
L, the single cloud line starts to intersect the full domain 
fit at ever smaller l. To the right of the intersection size, 
the points in the PDF are situated at the single cloud line, 
which thus again acts as a minimum possible value of 
N *. For the smallest domain size L 5 1.6 km, only N 5 
2, N = 3, and N = 4 occur. This behavior can be ex­
plained by the subdomain becoming comparable or even 
smaller than the cloud spacing so that sometimes no 
clouds are present in it. This binary-like occurrence of 
clouds can significantly boost the variance s2 at these 

sizes. More insight is provided by Fig. 6, showing the 
probability to encounter a cloud-free subdomain. In 
general, this probability is highest for the largest clouds 
and lowest for the smallest, a result that supports this 
hypothesis. This transition shifts with decreasing sub­
domain size L, with no-cloud occurrences becoming 
more frequent at smaller l. At small-to-intermediate L, 
the transition is gradual, while for large L, the transition 
is abrupt, almost binary. From these results, one con­
cludes that the no-cloud occurrence and its impact on the 
internal variability of the CSD is in principle a stochastic 
behavior, reflecting the subsampling of populations.
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Fig. 6. The probability P that no clouds are present in a sub­
domain, as a function of cloud size l, for a range of subdomain sizes 
L for the first snapshot of the RICO case.

b. Stochastic variability

The next step is to quantify the internal variability of 
the CSD due to subsampling as analyzed in the previous 
section. This is achieved by calculating the variance in 
cloud number σ2 for all cloud- and subdomain sizes, as 
defined by (5). To make sure that the results will only 
reflect subsampling, again the first RICO time point 
(t = 8 h) is used that shows the least signs of spatial or­
ganization. Figure 7a shows σ normalized by the average 
cloud number per subdomain N as a function of sub­
domain size L. Data points are equidistant in the hori­
zontal because of the set of n values that was chosen. For 
all cloud sizes, a well-defined monotone relation exists 
between these variables in log-log space, indicating a 
strong power-law scaling. Variability in cloud number 

also increases with cloud size, shifting the relation ver­
tically in a fairly equidistant way, leaving the slope un­
affected. In general, the relation is best defined at the 
smaller domain sizes but shows more noise at the larger 
subdomain sizes. This is caused by the number of sub­
domains K as used in the variance calculation decreasing 
quadratically with domain size (e.g., K = 4 at L = 0.5D).

The fact that the power-law scaling is similar for 
all cloud sizes, and that the lines of constant cloud size 
are more or less equidistant in the vertical, motivates 
reformulation in terms of two dimensionless groups. 
Figure 7b shows the same log-log plot but now with 
subdomain size L divided by cloud size l. This trans­
formation yields a data collapse. A first-order estimation 
of the slope suggests a power-law exponent b = —1, a fit 
of which indeed captures the dependence to a high de­
gree (dotted line). This dependence reflects an inverse 
linear relation between the dimensionless groups σ/N 
and L/l.

c. The impact of subsampling

What could explain the dependence of the CSD var­
iability on both the subdomain size L and the cloud size 
l? Let us first consider the inverse linear dependence on 
L. Inverse power-law forms have been found for many 
natural phenomena, including cloud fields (Newman 
2005). The starting point for understanding its appear­
ance in this problem is that the variability σ in the cloud 
number N present in a subdomain can be expected to be 
significant when L is of the same order of magnitude as 
the spacing between the clouds. Consider to this purpose 

Fig. 7. Log-log plot of the normalized standard deviation in cloud number σ/N for the first snapshot (t = 8 h) of the 
RICO case, plotted as a function of (a) subdomain size L and (b) subdomain size divided by cloud size L/l. A selection 
of sizes across the spectrum is shown, as indicated by the colors. The dotted line in (b) represents a fit of the baseline 
model for the impact of subsampling on cloud number variability with b = — 1, as discussed in section 3c.
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the hypothetical case of a population of clouds of a 
single size l that is regularly distributed horizontally, 
with each cloud and the cloud-free area around it 
occupying a ‘‘unit area’’ of spacing size ls. This situation 
is illustrated in Fig. 8. A subdomain is considered that 
covers a number of cloud-containing units, some of 
which are only partially covered (illustrated here as 
one row and one column at the edge). In this situation, 
the number of clouds in subdomain Nk can be written as

(7)

The first term on the right-hand side is a quadratic 
function of L and represents the number of clouds in­
cluded in the subdomain that one expects statistically 
after many subdomains are considered and is concep­
tually equal to N. In contrast, the second term is a linear 
function of L and represents the number of clouds near 
the subdomain’s edges that may or may not be situated 
inside its area. For the schematic cloud scene shown in 
Fig. 8, with L = 3.5ls this gives Nk = 12.25 6 3.5, im­
plying that the number of clouds in a single arbitrary 
snapshot can be anywhere between 9 and 16. The larger 
the L/ls is, the smaller the remainder term relative to 
the quadratic term, and the smaller the variation in the 
estimate of Nk. This corresponds to a less subsampled 
cloud population. What this implies for the cloud 
number variance σ2 can then simply be understood by 
substituting (7) in (5), which gives

(8)

where the quadratic term has disappeared because of 
the appearance of N in the definition of variance so that 
only the linear ‘‘boundary effect’’ term remains. Finally, 
normalizing by the average cloud number N yields

(9)

This proportionality explains the inverse linear de­
pendence of the normalized standard deviation in cloud 
number on the subdomain size that is purely due to 
subsampling. The power-law exponent of —1 can thus 
be considered a baseline model for this process.

What is also clear is that the effect of subsampling is 
first experienced by larger clouds. We speculate that 
this is explained by the observation that larger clouds 
typically have larger spacing ls (Joseph and Cahalan 
1990). The relation between l and ls could carry some 
dependence on the cumulus regime but also critically

Fig. 8. Schematic illustration of the subsampling of an equally 
spaced single-size cloud population. The red box indicates the 
subdomain of size L, while the blue grid boxes represent the spatial 
unit occupied by a single cloud and its spacing ls. Variables are 
explained in the text.

depends on how the cloud size l and the neighbor 
spacing ls are exactly defined. More research for more 
cumulus cases is needed to gain insight.

d. The impact of spatial organization

The analysis is now repeated for all six RICO fields, 
which become increasingly organized as time prog­
resses, as shown in Fig. 1. The time evolution of the re­
lation between σ/N and L is shown in Fig. 9a, first for a 
single cloud size (l — 25 m). In general, the variability 
increases with time, already suggesting that some pro­
cess is affecting the occurrence of the smallest clouds on 
the grid. Most importantly, the increase in variability is 
not uniform, but its amplitude increases with sub­
domain size L. Power-law scaling is still evident at all 
time points but with an increasingly reduced exponent. 
This means that, especially at larger L, the variance in 
the number of small clouds is larger than can be ex­
pected from pure subsampling effects, as expressed by 
the b — —1 baseline model.

More insight is provided by Fig. 9b, showing the 
power-law exponent for all cloud sizes l as a function of 
time. Two features stand out. First, the maximum cloud 
size in the domain increases with time, approaching 
10 km at the t = {24, 32}-h time points. This reflects the 
emergence of large cloud structures as visible in Fig. 1, 
although their number is still very small. Second, the 
impact of the spatial organization in the population on 
the power-law exponent appears limited to the smaller
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Fig. 9. (a) As in Fig. 7a, but for only a single cloud size I = 25 m as a function of time in the RICO case. (b) Power­
law exponent b as a function of cloud size and time in the RICO case, resulting from linear fits in 
log(s/N)-log(L/l) space.

end of the distribution and gradually disappears above 
about l = 250 m. These two findings suggest that spatial 
organization apparently affects both ends of the CSD. 
On the one end, the size of the largest cloud increases, 
while on the other, the variability in the number of small 
clouds is enhanced. This reflects that small clouds then 
‘‘live’’ on top of larger-scale thermodynamic structures 
in the boundary layer, such as cold pools or convergence 
lines, which favor or inhibit their formation.

To investigate the robustness of the impact of spatial 
organization on the CSD variability, the analysis is now 
repeated for all LASSO cases, as shown in Figs. 10a-e. 
The time evolution of the CSD is similar in all LASSO 
cases, with a gradually increasing maximum cloud size in 
the period after cloud onset. A reduction in the power­
law exponent at the smaller cloud sizes is also present; 
however, it is only visible toward the end of the day. A 
clear difference with the RICO case is the much shorter 
time span during which this happens. This suggests that 
the physical process of spatial organization causing this 
behavior is of a slightly different nature. After inspect­
ing the cloud mask fields in Fig. 2, one notices that, to­
ward the end of the day, small clouds start to surround 
the bigger clouds in the population. One speculates that 
this is caused by big clouds falling apart toward sunset, 
when turbulence dies. In that sense, one expects that this 
behavior is a typical and prototype feature of diurnal 
cycles of shallow cumulus over land. This motivates 
compositing the five cases to enhance the statistical 
significance, as shown in Fig. 10f. The compositing in­
deed makes the contoured field smoother. In addition, 
the compositing emphasizes that the reduction of the 

power-law exponent in the last hours of convective 
cloud existence is a robust feature.

4. Discussion

The results obtained so far for the RICO and LASSO 
cases suggest that the impact of spatial organization on 
the variability in cloud number is superimposed on the 
impact of subsampling alone. Two different mechanisms 
of spatial organization have been encountered in this 
study, including cold pool dynamics in the RICO case 
and cloud decay in the LASSO cases. But apparently, 
the impact of subsampling always takes place in the 
same way. This is further illustrated by Fig. 11, showing 
the scaled variances of all time points from all cases in 
one frame. All cloud sizes l > 250 m are included, thus 
excluding the size range that is most affected by orga­
nization in the cases considered. Combining all fields 
from all cases still yields a data collapse for this size 
range. A power-law fit is included in Fig. 11 (dashed 
line), yielding b = —0.92, which is very close to the 
baseline model of b = — 1 as formulated in section 3c 
(dotted line). This result suggests that the baseline 
model for the impact of subsampling on the variability in 
the cumulus CSD is indeed generally applicable.

This motivates expressing the CSD internal variability 
in terms of two dimensionless groups:

(10)

with exponent b written as
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FIG. 10. As in Fig. 9b, but for the LASSO cases (a) 20160518, (b) 20160619, (c) 20160625, (d) 20160716, and 
(e) 20160818 and (f) a composite average of (a)-(e). Nonsimulated time periods are shaded light gray.

b = — 11F (Org). (11)

The baseline value of b = — 1 exclusively reflects the 
impact of subsampling due to a too-small subdomain 
size. On top of this baseline exponent, the impact of the 
degree of spatial organization in the population is then 
superimposed through an extra term, depending on the 
degree of organization. While the latter dependence still 
needs to be established, one option could be the Org 
parameter as proposed by Mapes and Neale (2011). The 
parameter a, used here as constant of proportionality to 
fit the scaling relation (10) to the LES data, effectively 
translates the relation vertically in log-log space. A 
shift in this parameter thus reflects an overall change in 
the variability for all subdomain sizes. Constant a also 

depends on the bin width of the discretized CSD, as 
explained in appendix B. Whether a carries an addi­
tional dependence on Org is unknown and requires 
more research.

The scaling relation (10) has various potential uses. 
For example, it can inform the development of pa- 
rameterizations in the gray zone of moist convection by 
acting as a benchmark relation that stochastic param- 
eterizations of cumulus cloud populations have to re­
produce. This is in particularly applicable to schemes 
that are formulated in terms of reconstructed CSDs. 
Complex population dynamics models might let the 
number density grow from interaction between sizes, 
while simpler ones using assumed functional forms for 
the CSD could have the impact of subsampling and
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Fig. 11. As in Fig. 7b, but for all snapshots from all six cases. All 
combinations of s/N and L/l are sorted on a 2D histogram covering 
the parameter space shown above. The shading reflects the prob­
ability of occurrence, normalized such that the maximum proba­
bility is 1. All clouds with sizes l > 250 m are included. The dashed 
line is a least squares fit of the function F = F0 + b log(L/l) to the 
composite data, yielding b = —0.92 at F0 = 1.2. For reference, the 
fit of the baseline model with prescribed b = — 1, as already shown 
in Fig. 7b, is also included (dotted line).

spatial organization as established in this study super­
imposed. Regardless of the design of the stochastic 
parameterization, they can be called successful when 
they reproduce the b = — 1 scaling for unorganized 
cloud populations in the gray zone of convection.

The results obtained in this study highlight the im­
portant role of cloud spacing in controlling the sto­
chastic variability. Normalizing subdomain size by cloud 
size yields a data collapse in the scaled variance, argued 
here to reflect that cloud size is proportional to the cloud 
spacing. The data collapse suggests that the relation 
between cloud size and cloud spacing could be pretty 
robust. More research is needed to confirm and quantify 
this proportionality. Previous observational studies have 
indeed hinted at its existence in nature (e.g., Joseph and 
Cahalan 1990; Sengupta et al. 1990), but typically, these 
relations still carried considerable scatter. In addition, the 
definition of cloud spacing used in most previous studies 
is not equivalent to what is used in this study, which is the 
spacing between clouds of equal size. Exploring both 
observed and simulated datasets to investigate various 
definitions of cloud spacing is a future research topic.

This study also sheds more light on the nature of 
spatial organization in shallow cumulus cloud fields. 
Two types were encountered in the cases covered, in­
cluding cold pool formation in the marine case and large 
cloud decay in the diurnal cycle cases. While this study 
does not explain how the organization takes place, what 

the results do reveal is that both types of spatial organi­
zation are associated with a similar shift in the power-law 
exponent in the relation between s/N and L/l. Perhaps 
this shared behavior is something typical for spatial or­
ganization. More cases need to be investigated before 
being able to claim general applicability of this behavior, 
for example, for deeper precipitating convection.

An interesting idea inspired by these results is to 
use relation (11) in reverse and objectively estimate the 
degree of organization Borg from the power-law fit in 
(10) as diagnosed from simulated or observed cumulus 
cloud populations:

Borg = b + 1. (12)

This would be one possible way to define the degree of 
spatial organization Borg, in effect expressing it as the 
deviation from the inverse linear power law. Clouds 
of a certain size are unorganized if b = — 1 (perfectly 
inverse linear) and become organized as soon as 
b > — 1. Figures 9b and 10 could thus be interpreted as 
representing maps of Borg in size-time space. Recently, 
Tompkins and Semie (2017) proposed a metric for 
spatial organization Iorg, which is similar to Borg in its 
dependence on the nearest-neighbor spacing between 
cloudy objects. However, a key difference lies in the 
exact definition of the spacing; while Iorg works with the 
distance to the nearest cloud of any size, Borg implicitly 
depends on the distance between clouds of equal size 
through the normalization of L by l. This makes Borg 
particularly applicable for representing stochastic 
effects in convection schemes predicting the number of 
cumulus clouds of a certain size.

Some aspects of our analysis could affect the scaling. 
The first is numerical and concerns the LES discretiza­
tion, which could artificially affect the variability of the 
smallest clouds. This is investigated in more detail in 
appendix A. We find that while the power-law scaling in 
the cloud number variability (slope) is unaffected, the 
amplitude increases at cloud sizes smaller than 4Δχ. A 
close proximity to discretization thus slightly enhances 
the variability in cloud number. Note that these nu­
merically affected clouds were not included in the fitting 
exercise shown in Fig. 11. Nevertheless, because the spatial 
organization affects the smallest clouds most, additional 
simulations at even higher resolution are still advisable to 
investigate at which point convergence takes place. A 
second important aspect concerns the definition of cloud 
size, for which more complex alternatives can be used. 
For example, cloud objects could be tracked through 
time, which might change how their variability be­
haves. Perhaps this study, based on a simple definition 
of size, can serve as a starting point for such analyses.
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5. Summary, conclusions, and outlook

The main results of this study can be summarized as 
follows:

• Multiple three-dimensional snapshots from various 
large-domain LESs of marine and continental shallow 
cumulus cases are used to investigate the behavior of 
variability in cumulus cloud number due to subsam­
pling and spatial organization.• Strong power-law scaling is found in the relation 
between cloud number variability and subdomain size, 
reflecting an inverse linear relation.• Cloud spacing as a function of cloud size is a crucial 
parameter, explaining the data collapse across cases 
and time points.• The impact of spatial organization on the variability in 
the CSD is found to act on top of this baseline model by 
enhancing its amplitude, in particular at the smaller cloud 
sizes. The power-law scaling is still preserved but with a 
reduced exponent. This impact reflects that the small 
clouds start to live on top of larger-scale thermodynamic 
structures, favoring or inhibiting their formation.• A simple expression for the CSD internal variability is 
proposed that is formulated in terms of two dimen­
sionless groups and that captures the impact of both 
subsampling and spatial organization.• This scaling relation provides a new way to objectively 
estimate the degree of organization Borg in simulated 
or observed cumulus cloud populations as the de­
viation from a theoretical power-law scaling.• Compositing all continental cumulus cases suggests the 
existence of a prototype diurnal time dependence in the 
spatial organization Borg, partially reflecting the decay 
of large convective cumulus clouds toward sunset.

The subdomain analysis adopted in this study needs to 
be repeated for many more cumulus cloud scenes in 
order to broaden the parameter space of environmental 
large-scale conditions and thus enhance the statistical 
significance of the obtained results. This is required to 
better calibrate constants of proportionality and also to 
better understand the nature of spatial organization in 
cumulus cloud populations. Of particular relevance is 
the behavior of nearest-neighbor spacing between clouds 
of a certain size, as this dependence is at the foundation of 
the scaling relation found in this study. In an ongoing 
effort by the authors, data from super-large-domain LES 
experiments with the new Icosahedral Nonhydrostatic 
(ICON; Zängl et al. 2015) model in the Caribbean dry 
season are used for this purpose. In addition, existing 
observational datasets of shallow cumulus cloud pop­
ulations are revisited to seek observational support for 
the scaling found in the simulations. These data consist of

FIG. A1. As in Fig. 7b, but for clouds with l < 250 m.

satellite imagery as well as data from cloud-detecting 
ground-based imaging and remote sensing instrumentation 
at the ARM SGP site.
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APPENDIX A

Impacts of Discretization

In Fig. A1, the σ/N scaling is investigated for cloud 
sizes smaller than 10 times the LES discretization. For 
the clouds smaller than about 4Δχ, the scaling relation 
starts to be situated above the baseline model (dotted 
line) but remains more or less parallel. This implies that, 
at sizes near the discretization scale, the CSD variability
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Fig. B1. As in Fig. 7b, but for the sensitivity to CSD bin width ∆l. 
Only the size range 200 < l < 400 m is considered.

is somewhat larger than can be expected from subsampling 
alone. We speculate that this numerical artifact reflects on- 
off cloud behavior in single grid boxes that artificially 
boosts the variability in their number. However, most 
importantly, the power-law exponent is more or less un­
affected by the proximity to discretization, meaning that 
the scaling is maintained even for barely resolved clouds.

APPENDIX B

Sensitivity to CSD Bin Width

The bin width that was chosen to discretize the CSD 
might affect the scaling relation in (10). To examine this 
possible impact in more detail, the scaling is now re­
calculated for a specific size range of the CSD in the first 
snapshot of the RICO case for various bin widths ∆l. The 
size range 200 < l < 400 m is chosen to this purpose, as it 
is far enough removed from discretization (see appendix 
A) but covers sizes still small enough to be well sampled. 
For Δ12 {25,50,100,200} m, this yields a number of {8,4, 
2, 1} estimates of relation (10), respectively. The aver­
ages over these estimates are shown in Fig. B1. In­
creasing the bin width shifts the relation downward. This 
means that while cloud number N increases with larger 
bin width, the variability in cloud number σ also in­
creases but to a lesser extent. This probably reflects the 
smaller chance of zero cloud occurrence at a larger 
cloud number per bin. However, most importantly, the 
power-law exponent is always preserved and is in­
dependent of the bin width.
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