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We numerically study the distribution P�f� of contact forces in frictionless bead packs, by averaging over the
ensemble of all possible force network configurations. We resort to umbrella sampling to resolve the
asymptotic decay of P�f� for large f , and determine P�f� down to values of order 10−45 for ordered and
disordered systems in two �2D� and three dimensions �3D�. Our findings unambiguously show that, in the
ensemble approach, the force distributions decay much faster than exponentially: P�f��exp�−cf��, with
��2.0 for 2D systems, and ��1.7 for 3D systems.
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The contact forces inside a static packing of grains are
organized into highly heterogeneous force networks, and can
be characterized by the probability density of contact forces
P�f� �1�. Such force statistics were first studied in a series of
experiments that measured forces through imprints on carbon
paper at the boundaries of a granular assembly. Unexpect-
edly, the obtained P�f� displayed an exponential rather than a
Gaussian decay for large forces �2�. After these initial find-
ings, other experimental techniques have revealed
similarly exponentially decaying distributions of the bound-
ary forces �3,4�.

As it is difficult to experimentally access contact forces
inside the packing, numerous direct numerical simulations of
P�f� have been undertaken �5,6�. While many of these stud-
ies claim to find an exponential tail as well, the evidence is
less convincing than for the carbon paper experiments: apart
from �5�, nearly all numerical force probabilities bend down
on a logarithmic plot, suggesting a faster than exponential
decay �6�. In addition, new experimental techniques using
photoelastic particles �7� or emulsions �8,9� have produced
bulk measurements, and these also reveal a much faster than
exponential decay for P�f�, consistent with a Gaussian tail.

Nevertheless, much theoretical effort has focused on ex-
plaining the exponential tail of P�f�, starting with the pio-
neering q model �10�. Here, scalar forces are balanced on a
regular grid, but it was later realized that, in this model, the
tail of P�f� depends on details of the stochastic rules for the
force transmission, and need not be exponential �11�. Other
explanations for the exponential tail hinge on “entropy maxi-
mization” �12�, or closely related, on an analogy with the
Boltzmann distribution �13,14�. The essence of the latter ar-
gument is that a uniform sampling of forces that �i� are all
positive �corresponding to the repulsive nature of contact
forces�, and �ii� add up to a constant value �set by the re-
quirement that the overall pressure is constant� strongly re-
sembles the microcanonical ensemble, in which configura-
tions are flatly sampled under the constraint of fixed total
energy.

In this paper, we will probe the tail of P�f� in the force
network ensemble �15–20�. This ensemble is obtained by
flatly sampling all force configurations for which forces are
repulsive and add up to satisfy overall stresses, i.e., �i� and

�ii� as listed above, under the additional constraints of force
balance on all grains. We numerically resolve the probability
for large forces using the technique of umbrella sampling
�21�, which yields accurate statistics for P�f� for relative
probabilities down to 10−45 and f up to f =15 �throughout, all
forces are normalized such that �f�=1�. This high accuracy is
crucial for excluding any crossover effects and allows us to
unambiguously identify the behavior for f �1. We study the
force ensemble for frictionless systems in two and three di-
mensions, with both ordered and disordered contact net-
works, and also explore the effect of system size and contact
number.

For all systems, we have found that the ensemble yields
force distributions that decay much faster than exponentially.
The dimensionality of the system is crucial, while other
factors hardly affect the asymptotics: P�f� decays as
exp�−cf��, with �=2.0±0.1 in two dimensions, while in
three dimensions �=1.7±0.1 �22�.

Our results thus underline the importance of the additional
constraints that forces have to balance on each grain: these
are ignored in the “Boltzmann”-type arguments, but com-
pletely alter the properties of P�f�.

The ensemble approach to force networks is inspired by
the proposal of Edwards to assign an equal probability to all
“blocked” states, i.e., states that are at mechanical equilib-
rium �23�. By limiting the Edwards ensemble to a single
packing of fixed contact geometry �24�, where the contact
forces are the remaining degrees of freedom and all allowed
force configurations are sampled with equal weight, one ob-
tains the force network ensemble. Here we restrict ourselves
to spherical particles with frictionless contacts, so that every
contact force f i corresponds to one scalar degree of freedom.
Furthermore, we require all f i�0 due to the repulsive nature
of the contacts. As the equations of mechanical equilibrium

are linear in the contact forces, one can cast the solutions f�

= �f1 , f2 , . . . � in the form f�= f�0+	kckv�k. The solution space is

spanned by the vectors v�k and f�0, and can be sampled
through the coefficients ck—for details we refer to Refs.
�15,16,19�. For a hexagonal packing �two dimensional�,
these vectors are easily constructed using so-called wheel
moves �19�, but for other packings we have obtained v�k and
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f�0 from a simulated annealing procedure �15�. Ensemble av-
erages using a uniform measure in this force space then be-
come

�q� = �−1

C

dc� q, � � 

C

dc� , �1�

where the integral runs over the coefficients ck limited to the
convex subspace C for which all f i�0 �18�.

To obtain accurate statistics for large forces, we perform
umbrella sampling. The idea is to bias the numerical sam-
pling toward solutions with large forces, using a Monte Carlo
technique with a modified measure dc� ��c�� /�, and then cor-
rect for this bias when performing the averages, �q�
= �q /��umbrella, since

�q� = �−1

C

dc� ��c��� q

��c��
 . �2�

Defining fmax as the largest force for a given c�, we have used
a measure ��c���eW�fmax�, where W is chosen such that the

probability of fmax in the modified ensemble is approxi-
mately flat in the range 1	 fmax	15 �the precise form of W
is irrelevant�. We have verified that this procedure exactly
reproduces P�f� in the range accessible by the conventional
unbiased sampling �19�. However, forces of the order of 15
are now sampled only 104 times less frequently than forces
around 1, even though their relative probability is about
10−45, leading to the spectacular improvement in numerical
accuracy �25�.

A well-studied geometry for which the force network en-
semble yields nontrivial results is that when all particles are
of equal size and form a hexagonal lattice �15,16,19�. The
umbrella sampling allows us to access the statistics beyond
f =5. Figure 1�a� shows that P�f� decays much faster than
exponentially, and that effects of the finite size of the system
are weak. Figure 1�b� illustrates that, for increasingly large
systems, P�f� rapidly converges to an asymptotic form which
is characterized by a purely Gaussian decay. This can also be
seen in the inset of Fig. 1�b�, where we exploit the fact that
we have access to P�f� over more than 40 decades: Assum-
ing that, for large f , P�f��exp�−cf��, one can infer the ex-
ponent � from the asymptotic slope of a triple-logarithmic
plot in which log10�−log10 P� is plotted as function of log10 f
�4�. The inset of Fig. 1�b� shows that �=2.0±0.1, confirming
that the tail of P�f� is well described by a Gaussian decay
�26�.

To investigate the effect of packing disorder and coordi-
nation number z, we have created packings from molecular
dynamics simulations of soft particles in periodic boundary
conditions �see �15,17��. The coordination number z is con-
trolled by the pressure in the simulations. Once a packing is
obtained, all particle positions are kept fixed, and we subse-
quently explore the ensemble of force networks for these
packings. At this point the interparticle potential is no longer
used, so that grain rigidity is not a parameter in the en-
semble.

For all 2D disordered packings, P�f� decays much faster
than exponentially, as shown in Fig. 2. Comparing the or-
dered hexagonal packings to a disordered system with equal
coordination number, z=6, we find nearly indistinguishable
P�f� �inset Fig. 2�a��. This suggests that the packing �dis�or-
der and preparation history are not important for P�f� in the
ensemble. However, the contact number influences the

(a) (b)

FIG. 1. �Color� Force probabilities in two-dimensional hexago-
nal packings of N particles with periodic boundary conditions. �a�
P�f� decays much faster than exponentially, and rapidly converges
to its asymptotic form with N—larger N correspond to wider distri-
butions. The inset illustrates that system size effects are hardly vis-
ible for P�f� down to 10−6. �b� log10 P�f� vs f2 becomes a perfectly
straight line for large systems, indicating that the tail of P�f� is well
described by a Gaussian decay �exp�−cf2� �dashed line�. The inset
shows that, on a triple-logarithmic plot, the asymptotic decay at-
tains a slope close to 2, confirming the Gaussian tail �see text�.
Curves are offset for clarity, and lines are guides to the eye.

(a) (b) (c) (d)

FIG. 2. �Color� Force distribution for two-dimensional systems. �a� For increasing values of the contact number z, P�f� grows in width
�disordered packings, N=1000�. The inset compares P�f� for a disordered packing with z=6 and N=1000 and the hexagonal packing for
N=2900. �b� The same data as in �a�, now plotted as log10 P�f� vs f2, tends to a straight curve for large z. The inset shows that on a smaller
range, all curves look Gaussian. �c� Same data as in �a� and �b�, now on a triple-logarithmic plot. The range in f over which P�f� looks
Gaussian grows with contact number z. �d� For fixed small z=4.5, P�f� appears to approach a Gaussian tail for large N.
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asymptotic decay: a lower z leads to a faster decay �Figs.
2�a� and 2�b��, although in the restricted range f 	5, the
force distribution appears very close to Gaussian for all z
�inset Fig. 2�b��. For the lowest z in particular, this tendency
is cut off at large f , which can be clearly seen in the triple-
logarithmic plot �Fig. 2�c��, where all curves tend toward a
well-defined slope �=2.0 for intermediate f , but cross over
to a much faster decay for large f . We suggest that this is a
finite-size effect, which is most severe when z approaches
the isostatic point �z=4�, where there are fewer and fewer
degrees of freedom available �17,27�. Indeed, data for z
=4.5 and increasing system sizes suggest that the “kink” in
the triple-logarithmic plots becomes less severe for large sys-
tems �Fig. 2�d��—our data are not conclusive as to whether
this kink will disappear for N→
.

In conclusion, for two-dimensional, frictionless systems,
the ensemble approach yields force distributions P�f� that
decay at least as fast as a Gaussian.

We now turn to three-dimensional systems, which again
have been generated using molecular dynamics. Similar to
what happens in two dimensions, Fig. 3�a� shows that P�f�
decays faster than exponentially, and disordered and regular
�fcc� packings have very similar force distributions. How-
ever, the decay is now slower than Gaussian and much more
accurately described by P�f��exp�−cf�� with an exponent
�=1.7±0.1 �see Figs. 3�b�–3�d��. This exponent has been
determined from the triple-logarithmic plots of Fig. 3�d� for
a range of contact numbers and system sizes, and in all cases
the slope is close to �=1.7 over a decade.

For comparison we have, in Figs. 3�b�–3�d�, also included
the result for the hexagonal pack, which is seen to decrease
significantly more rapidly than the P�f�’s of the three-
dimensional systems. Surprisingly, we thus find that the di-
mensionality of the packing determines the nature of the tail
of P�f�.

From experiments on �two-dimensional� sheared packs of
photoelastic grains, it was found that the distribution broad-
ened significantly, and developed an exponential-like regime
in a range up to f =4�f� �7�. The ensemble indeed reproduces
this qualitative feature for packs under shear. As can be seen

in Fig. 4, however, there does not seem to be a simple
asymptotic decay. This is because the force anisotropy in-
duced by the shear stress yields a variation in �f� depending
on the orientation of the contact �17,19�. The total P�f� be-
comes a superposition over all orientations, of mixed force
statistics, and hence lacks a single characteristic feature.

We have shown for the force network ensemble that the
tail of P�f� decays faster than exponentially, in agreement
with recent experiments �7,9�, but inconsistent with others
�2–4�. Some of our results required extremely accurate sta-
tistics, beyond the regime accessible by experiments or con-
ventional simulations. In particular, it would be difficult to
distinguish an exponent �=1.7 from 2.0. Nevertheless the
discrepancy between the exponential data sets �2–4� and the
faster-than-exponential data sets �7,9� cannot be explained
away by finite error bars, but is convincing and worthwhile
of further investigations.

The experimental and numerical data for P�f� have been
obtained from a wide variety of systems and models, and
parameters such as dimensionality, friction, hardness of
grains �28�, and bulk vs boundary measurements may ulti-

(a) (b) (c) (d)

FIG. 3. �Color� Force distribution for three-dimensional systems. �a� P�f� for two disordered and a regular fcc packing of N=500
particles—the fcc packing has the smallest width, while for the disordered packs the width grows with contact number. �b� The same, now
plotted as function of f2. The dashed line corresponds to a hexagonal packing in 2D, which has a Gaussian tail—the tail of P�f� for 3D
systems is significantly less steep. �c� Same data, now plotted as function of f1.7—the tails for the P�f� of 3D packings are now straight. �d�
The change from 2 to 1.7 is also clearly visible in the triple-logarithmic plot. For a range of system sizes and contact numbers, we robustly
find that P�f��exp�−cf�� with an exponent ��1.7 for 3D systems—for comparison, we also show the Gaussian distribution for the 2D
hexagonal packing. Note that, for small systems and small contact number �N=250, z=9.1�, finite-size deviations, similar to those observed
in two dimensions, can be seen.

(a) (b)

FIG. 4. �Color� Two-dimensional disordered system with z
=5.5 experiencing a shear stress ���xy /�xx �17�. �a� While, for
large �, the tail of P�f� viewed over a limited range broadens and
may appear exponential �inset�, the asymptotic decay of P�f� for
f 10 in fact increases with � �main panel�. �b� The same point is
illustrated in the triple-logarithmic plots, which also show data for
�=0.1 and 0.3.
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mately all play a role in determining the asymptotics of P�f�.
The ensemble can also be extended to include torque balance
and to explore boundary measurements. Based on earlier
work on boundary effects �29�, however, we speculate that
these extensions would not alter the tail of P�f� significantly.

A crucial untested assumption in the ensemble is the flat
measure, i.e., the sampling of all allowed configurations with
equal weight. As argued in Ref. �4�, different experimental

procedures and parameters can lead to a different P�f�, so
that the effective sampling of force networks may not be
universal.
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