93 research outputs found

    Perception versus reality: A National Cohort Analysis of the surgery-first approach for resectable pancreatic cancer

    Get PDF
    INTRODUCTION: Although surgical resection is necessary, it is not sufficient for long-term survival in pancreatic ductal adenocarcinoma (PDAC). We sought to evaluate survival after up-front surgery (UFS) in anatomically resectable PDAC in the context of three critical factors: (A) margin status; (B) CA19-9; and (C) receipt of adjuvant chemotherapy. METHODS: The National Cancer Data Base (2010-2015) was reviewed for clinically resectable (stage 0/I/II) PDAC patients. Surgical margins, pre-operative CA19-9, and receipt of adjuvant chemotherapy were evaluated. Patient overall survival was stratified based on these factors and their respective combinations. Outcomes after UFS were compared to equivalently staged patients after neoadjuvant chemotherapy on an intention-to-treat (ITT) basis. RESULTS: Twelve thousand and eighty-nine patients were included (n = 9197 UFS, n = 2892 ITT neoadjuvant). In the UFS cohort, only 20.4% had all three factors (median OS = 31.2 months). Nearly 1/3rd (32.7%) of UFS patients had none or only one factor with concomitant worst survival (median OS = 14.7 months). Survival after UFS decreased with each failing factor (two factors: 23 months, one factor: 15.5 months, no factors: 7.9 months) and this persisted after adjustment. Overall survival was superior in the ITT-neoadjuvant cohort (27.9 vs. 22 months) to UFS. CONCLUSION: Despite the perceived benefit of UFS, only 1-in-5 UFS patients actually realize maximal survival when known factors highly associated with outcomes are assessed. Patients are proportionally more likely to do worst, rather than best after UFS treatment. Similarly staged patients undergoing ITT-neoadjuvant therapy achieve survival superior to the majority of UFS patients. Patients and providers should be aware of the false perception of \u27optimal\u27 survival benefit with UFS in anatomically resectable PDAC

    Characteristic retinal atrophy pattern allows differentiation between pediatric MOGAD and MS after a single optic neuritis episode.

    Get PDF
    BACKGROUND Optic neuritis (ON) is the most prevalent manifestation of pediatric multiple sclerosis (MSped) and myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGADped) in children > 6 years. In this study, we investigated retinal atrophy patterns and diagnostic accuracy of optical coherence tomography (OCT) in differentiating between both diseases after the first ON episode. METHODS Patients were retrospectively identified in eight tertial referral centers. OCT, VEP and high/low-contrast visual acuity (HCVA/LCVA) have been investigated > 6 months after the first ON. Prevalence of pathological OCT findings was identified based on data of 144 age-matched healthy controls. RESULTS Thirteen MOGADped (10.7 ± 4.2 years, F:M 8:5, 21 ON eyes) and 21 MSped (14.3 ± 2.4 years, F:M 19:2, 24 ON eyes) patients were recruited. We observed a significantly more profound atrophy of both peripapillary and macular retinal nerve fiber layer in MOGADped compared to MSped (pRNFL global: 68.2 ± 16.9 vs. 89.4 ± 12.3 µm, p < 0.001; mRNFL: 0.12 ± 0.01 vs. 0.14 ± 0.01 mm3, p < 0.001). Neither other macular layers nor P100 latency differed. MOGADped developed global atrophy affecting all peripapillary segments, while MSped displayed predominantly temporal thinning. Nasal pRNFL allowed differentiation between both diseases with the highest diagnostic accuracy (AUC = 0.902, cutoff < 62.5 µm, 90.5% sensitivity and 70.8% specificity for MOGADped). OCT was also substantially more sensitive compared to VEP in identification of ON eyes in MOGAD (pathological findings in 90% vs. 14%, p = 0.016). CONCLUSION First MOGAD-ON results in a more severe global peripapillary atrophy compared to predominantly temporal thinning in MS-ON. Nasal pRNFL allows differentiation between both diseases with the highest accuracy, supporting the additional diagnostic value of OCT in children with ON

    International data governance for neuroscience

    Get PDF
    open access article This paper was produced by the International Brain Initiative Data Standards and Sharing Working Group's Taskforce on International Data Governance chaired by Damian Eke (from CCSR)As neuroscience projects increase in scale and cross international borders, different ethical principles, national and international laws, regulations, and policies for data sharing must be considered. These concerns are part of what is collectively called data governance. Whereas neuroscience data transcend borders, data governance is typically constrained within geopolitical boundaries. An international data governance framework and accompanying infrastructure can assist investigators, institutions, data repositories, and funders with navigating disparate policies. Here, we propose principles and operational considerations for how data governance in neuroscience can be navigated at an international scale and highlight gaps, challenges, and opportunities in a global brain data ecosystem. We consider how to approach data governance in a way that balances data protection requirements and the need for open science, so as to promote international collaboration through federated constructs such as the International Brain Initiative (IBI)

    An APRI+ALBI Based Multivariable Model as Preoperative Predictor for Posthepatectomy Liver Failure.

    Get PDF
    OBJECTIVE AND BACKGROUND Clinically significant posthepatectomy liver failure (PHLF B+C) remains the main cause of mortality after major hepatic resection. This study aimed to establish an APRI+ALBI, aspartate aminotransferase to platelet ratio (APRI) combined with albumin-bilirubin grade (ALBI), based multivariable model (MVM) to predict PHLF and compare its performance to indocyanine green clearance (ICG-R15 or ICG-PDR) and albumin-ICG evaluation (ALICE). METHODS 12,056 patients from the National Surgical Quality Improvement Program (NSQIP) database were used to generate a MVM to predict PHLF B+C. The model was determined using stepwise backwards elimination. Performance of the model was tested using receiver operating characteristic curve analysis and validated in an international cohort of 2,525 patients. In 620 patients, the APRI+ALBI MVM, trained in the NSQIP cohort, was compared with MVM's based on other liver function tests (ICG clearance, ALICE) by comparing the areas under the curve (AUC). RESULTS A MVM including APRI+ALBI, age, sex, tumor type and extent of resection was found to predict PHLF B+C with an AUC of 0.77, with comparable performance in the validation cohort (AUC 0.74). In direct comparison with other MVM's based on more expensive and time-consuming liver function tests (ICG clearance, ALICE), the APRI+ALBI MVM demonstrated equal predictive potential for PHLF B+C. A smartphone application for calculation of the APRI+ALBI MVM was designed. CONCLUSION Risk assessment via the APRI+ALBI MVM for PHLF B+C increases preoperative predictive accuracy and represents an universally available and cost-effective risk assessment prior to hepatectomy, facilitated by a freely available smartphone app

    Glutathione Restores the Mechanism of Synaptic Plasticity in Aged Mice to That of the Adult

    Get PDF
    Glutathione (GSH), the major endogenous antioxidant produced by cells, can modulate the activity of N-methyl-D-aspartate receptors (NMDARs) through its reducing functions. During aging, an increase in oxidative stress leads to decreased levels of GSH in the brain. Concurrently, aging is characterized by calcium dysregulation, thought to underlie impairments in hippocampal NMDAR-dependent long-term potentiation (LTP), a form of synaptic plasticity thought to represent a cellular model for memory

    IL-6 Mediated Degeneration of Forebrain GABAergic Interneurons and Cognitive Impairment in Aged Mice through Activation of Neuronal NADPH Oxidase

    Get PDF
    BACKGROUND:Multiple studies have shown that plasma levels of the pro-inflammatory cytokine interleukin-6 (IL-6) are elevated in patients with important and prevalent adverse health conditions, including atherosclerosis, diabetes, obesity, obstructive sleep apnea, hypertension, and frailty. Higher plasma levels of IL-6, in turn, increase the risk of many conditions associated with aging including age-related cognitive decline. However, the mechanisms underlying this association between IL-6 and cognitive vulnerability remain unclear. METHODS AND FINDINGS:We investigated the role of IL-6 in brain aging in young (4 mo) and aged (24 mo) wild-type C57BL6 and genetically-matched IL-6(-/-) mice, and determined that IL-6 was necessary and sufficient for increased neuronal expression of the superoxide-producing immune enzyme, NADPH-oxidase, and this was mediated by non-canonical NFkappaB signaling. Furthermore, superoxide production by NADPH-oxidase was directly responsible for age-related loss of parvalbumin (PV)-expressing GABAergic interneurons, neurons essential for normal information processing, encoding, and retrieval in hippocampus and cortex. Targeted deletion of IL-6 or elimination of superoxide by chronic treatment with a superoxide-dismutase mimetic prevented age-related loss of PV-interneurons and reversed age-related cognitive deficits on three standard tests of spatial learning and recall. CONCLUSIONS:Present results indicate that IL-6 mediates age-related loss of critical PV-expressing GABAergic interneurons through increased neuronal NADPH-oxidase-derived superoxide production, and that rescue of these interneurons preserves cognitive performance in aging mice, suggesting that elevated peripheral IL-6 levels may be directly and mechanistically linked to long-lasting cognitive deficits in even normal older individuals. Further, because PV-interneurons are also selectively affected by commonly used anesthetic agents and drugs, our findings imply that IL-6 levels may predict adverse CNS effects in older patients exposed to these compounds through specific derangements in inhibitory interneurons, and that therapies directed at lowering IL-6 may have cognitive benefits clinically

    A Self-Organising Model of Thermoregulatory Huddling

    Get PDF
    Endotherms such as rats and mice huddle together to keep warm. The huddle is considered to be an example of a self-organising system, because complex properties of the collective group behaviour are thought to emerge spontaneously through simple interactions between individuals. Groups of rodent pups display two such emergent properties. First, huddling undergoes a ‘phase transition’, such that pups start to aggregate rapidly as the temperature of the environment falls below a critical temperature. Second, the huddle maintains a constant ‘pup flow’, where cooler pups at the periphery continually displace warmer pups at the centre. We set out to test whether these complex group behaviours can emerge spontaneously from local interactions between individuals. We designed a model using a minimal set of assumptions about how individual pups interact, by simply turning towards heat sources, and show in computer simulations that the model reproduces the first emergent property—the phase transition. However, this minimal model tends to produce an unnatural behaviour where several smaller aggregates emerge rather than one large huddle. We found that an extension of the minimal model to include heat exchange between pups allows the group to maintain one large huddle but eradicates the phase transition, whereas inclusion of an additional homeostatic term recovers the phase transition for large huddles. As an unanticipated consequence, the extended model also naturally gave rise to the second observed emergent property—a continuous pup flow. The model therefore serves as a minimal description of huddling as a self-organising system, and as an existence proof that group-level huddling dynamics emerge spontaneously through simple interactions between individuals. We derive a specific testable prediction: Increasing the capacity of the individual to generate or conserve heat will increase the range of ambient temperatures over which adaptive thermoregulatory huddling will emerge
    • …
    corecore