472 research outputs found

    Measuring customer satisfaction in the context of health clubs in Portugal

    Get PDF
    The present study aimed to test the psychometric properties of the need-satisfaction scale developed by Alexandris et al. (1999), in the context of health clubs in Portugal. The sample of the study consisted of four hundred and twenty six (N=426) individuals, who were members of five private clubs in Braga, Portugal. The principal component analysis of the need-satisfaction scale revealed five dimensions, which were labeled as follows: facilities / services, staff, relaxation, health / fitness, social / intellectual. All the sub-scales were shown to have good internal consistency reliabilities. The results further indicated that there were significant demographic differences in some of the satisfaction dimensions. Females were shown to be less satisfied in the facilities / services dimension, while individuals with higher levels of education were shown to be less satisfied both in the facilities / services and social / intellectual dimensions

    Mesophase formation in two-component cylindrical bottle-brush polymers

    Full text link
    When two types of side chains (A,B) are densely grafted to a (stiff) backbone and the resulting bottle-brush polymer is in a solution under poor solvent conditions, an incompatibility between A and B leads to microphase separation in the resulting cylindrical brush. The possible types of ordering are reminiscent of the ordering of block copolymers in cylindrical confinement. Starting from this analogy, Leibler's theory of microphase separation in block copolymer melts is generalized to derive a description of the system in the weak segregation limit. Also molecular dynamics simulation results of a corresponding coarse-grained bead-spring model are presented. Using side chain lengths up to N = 50 effective monomers, the ratio of the Lennard-Jones energy parameter between unlike monomers (ϵAB)(\epsilon_{AB}) and monomers of the same kind (ϵAA=ϵBB)(\epsilon _{AA} = \epsilon_{BB}) is varied. Various correlation functions are analyzed to study the conditions when (local) Janus cylinder-type ordering and when (local) microphase separation in the direction along the cylinder axis occurs. Both the analytical theory and the simulations give evidence for short range order due to a tendency towards microphase separation in the axial direction, with a wavelength proportional to the side chain gyration radius, irrespective of temperature and grafting density, for a wide range of these parameters.Comment: 26 pages, 19 figure

    Paper Session I-B - Passive Radiation Dosimetry on STS-91 Using DNA: Initial Results from ASPR-GRaDEx-1

    Get PDF
    Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. TY.pically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used for dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. The Association of Small Payload Researchers in conjunction with Texas A&M University and Broward Community College have constructed a genotoxicology experiment to determine the degree to which in-vitro naked DNA extracted from tissues of a variety of vertebrate organisms including man, chicken, and fish, is damaged by exposure to cosmic radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine the average length of DNA strands in each sample. It is hoped that a low mass low cost passive biological system to determine dose-response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological systems (e.g. astronauts and greenhouses) in space. Initial results of a genotoxicology and radiation dosimetry experiment (ASPR-GRaDEx-1) are presented. The payload orbited on the space shuttle Discovery (STS-91) in June of 1998. The study has been supported by the Florida Space Institute, NASA, ASPR, the Department of Wildlife and Fisheries Sciences at Texas A&M University, Boeing-KSC, the National Space Biomedical Research Institute, the Florida Space Grant Consortium, Broward and Brevard Community Colleges, the University of Miami, and Belen Jesuit High School

    Thalidomide ameliorates portal hypertension via nitric oxide synthase independent reduced systolic blood pressure

    Get PDF
    AIM: Portal hypertension is a common complication of liver cirrhosis and significantly increases mortality and morbidity. Previous reports have suggested that the compound thalidomide attenuates portal hypertension (PHT). However, the mechanism for this action is not fully elucidated. One hypothesis is that thalidomide destabilizes tumor necrosis factor α (TNFα) mRNA and therefore diminishes TNFα induction of nitric oxide synthase (NOS) and the production of nitric oxide (NO). To examine this hypothesis, we utilized the murine partial portal vein ligation (PVL) PHT model in combination with endothelial or inducible NOS isoform gene knockout mice. METHODS: Wild type, inducible nitric oxide synthase (iNOS)-/- and endothelial nitric oxide synthase (eNOS)-/- mice received either PVL or sham surgery and were given either thalidomide or vehicle. Serum nitrate (total nitrate, NOx) was measured daily for 7 d as a surrogate of NO synthesis. Serum TNFα level was quantified by enzyme-linked immunosorbent assay. TNFα mRNA was quantified in liver and aorta tissue by reverse transcription-polymerase chain reaction. PHT was determined by recording splenic pulp pressure (SPP) and abdominal aortic flow after 0-7 d. Response to thalidomide was determined by measurement of SPP and mean arterial pressure (MAP). RESULTS: SPP, abdominal aortic flow (Qao) and plasma NOx were increased in wild type and iNOS-/- PVL mice when compared to sham operated control mice. In contrast, SPP, Qao and plasma NOx were not increased in eNOS-/- PVL mice when compared to sham controls. Serum TNFα level in both sham and PVL mice was below the detection limit of the commercial ELISA used. Therefore, the effect of thalidomide on serum TNFα levels was undetermined in wild type, eNOS-/- or iNOS-/- mice. Thalidomide acutely increased plasma NOx in wild type and eNOS-/- mice but not iNOS-/- mice. Moreover, thalidomide temporarily (0-90 min) decreased mean arterial pressure, SPP and Qao in wild type, eNOS-/- and iNOS-/- PVL mice, after which time levels returned to the respective baseline. CONCLUSION: Thalidomide does not reduce portal pressure in the murine PVL model by modulation of NO biosynthesis. Rather, thalidomide reduces PHT by decreasing MAP by an undetermined mechanism

    Universality from disorder in the random-bond Blume-Capel model

    Get PDF
    Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior in the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L∗≈32L^{\ast} \approx 32 for the chosen parameters

    Phase behavior of symmetric linear multiblock copolymers

    Full text link
    Molecular dynamics simulations are used to study the phase behavior of a single linear multiblock copolymer with blocks of A- and B-type monomers under poor solvent conditions, varying the block length NN, number of blocks nn, and the solvent quality (by variation of the temperature TT). The fraction ff of A-type monomers is kept constant and equal to 0.5, and always the lengths of A and B blocks were equal (NA=NB=NN_{A}=N_{B}=N), as well as the number of blocks (nA=nB=nn_{A}=n_{B}=n). We identify the three following regimes where: (i) full microphase separation between blocks of different type occurs (all blocks of A-type monomers form a single cluster, while all blocks of B-type monomers form another), (ii) full microphase separation is observed with a certain probability, and (iii) full microphase separation can not take place. For very high number of blocks nn and very high NN (not accessible to our simulations) further investigation is needed.Comment: 5 pages, 4 figures, to be published in Europhys. Let

    Solvation-guided design of fluorescent probes for discrimination of amyloids

    Get PDF
    The deposition of insoluble protein aggregates in the brain is a hallmark of many neurodegenerative diseases. While their exact role in neurodegeneration remains unclear, the presence of these amyloid deposits often precedes clinical symptoms. As a result, recent progress in imaging methods that utilize amyloid-specific small molecule probes have become a promising avenue for antemortem disease diagnosis. Here, we present a series of amino-aryl cyanoacrylate (AACA) fluorophores that show a turn-on fluorescence signal upon binding to amyloids in solution and in tissue. Using a theoretical model for environmental sensitivity of fluorescence together with ab initio computational modeling of the effects of polar environment on electron density distribution and conformational dynamics, we designed, synthesized, and evaluated a set of fluorophores that (1) bind to aggregated forms of Alzheimer's-related beta-amyloid peptides with low micromolar to high nanomolar affinities and (2) have the capability to fluorescently discriminate different amyloids based on differences in amino acid composition within the binding pocket through exploitation of their solvatochromic properties. These studies showcase the rational design of a family of amyloid-binding imaging agents that could be integrated with new optical approaches for the clinical diagnosis of amyloidoses, where accurate identification of the specific neurodegenerative disease could aid in the selection of a proper course for treatment

    Bose-Einstein condensates in standing waves: The cubic nonlinear Schroedinger equation with a periodic potential

    Full text link
    We present a new family of stationary solutions to the cubic nonlinear Schroedinger equation with a Jacobian elliptic function potential. In the limit of a sinusoidal potential our solutions model a dilute gas Bose-Einstein condensate trapped in a standing light wave. Provided the ratio of the height of the variations of the condensate to its DC offset is small enough, both trivial phase and nontrivial phase solutions are shown to be stable. Numerical simulations suggest such stationary states are experimentally observable.Comment: 4 pages, 4 figure
    • …
    corecore