3 research outputs found

    Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair

    Get PDF
    <div><p>Genome editing occurs in the context of chromatin, which is heterogeneous in structure and function across the genome. Chromatin heterogeneity is thought to affect genome editing efficiency, but this has been challenging to quantify due to the presence of confounding variables. Here, we develop a method that exploits the allele-specific chromatin status of imprinted genes in order to address this problem in cycling mouse embryonic stem cells (mESCs). Because maternal and paternal alleles of imprinted genes have identical DNA sequence and are situated in the same nucleus, allele-specific differences in the frequency and spectrum of mutations induced by CRISPR-Cas9 can be unequivocally attributed to epigenetic mechanisms. We found that heterochromatin can impede mutagenesis, but to a degree that depends on other key experimental parameters. Mutagenesis was impeded by up to 7-fold when Cas9 exposure was brief and when intracellular Cas9 expression was low. In contrast, the outcome of mutagenic DNA repair was unaffected by chromatin state, with similar efficiencies of homology-directed repair (HDR) and deletion spectra on maternal and paternal chromosomes. Combined, our data show that heterochromatin imposes a permeable barrier that influences the kinetics, but not the endpoint, of CRISPR-Cas9 genome editing and suggest that therapeutic applications involving low-level Cas9 exposure will be particularly affected by chromatin status.</p></div

    Investigation of splicing-dependent transcriptional checkpoints

    No full text
    Pre-mRNA splicing and other RNA processing events occur co-transcriptionally. High resolution kinetic studies performed in our lab showed splicing-dependent RNA Pol II (RNA polymerase II) pausing near the 3’ splice site of a reporter gene. Pausing requires splicing, as mutations that block splicing lead to loss of pausing, and restoring splicing restores pausing. It was proposed that RNA Pol II pausing may occur at splicing-dependent transcriptional checkpoints. In this study, I aimed to search for splicing helicases that might couple splicing with transcription. The ts alleles prp5-1 and prp16-2 were found to cause transcription defects. These genes encode RNA helicases that were reported to act as fidelity factors during splicing. In vivo RNA labelling and RT-qPCR experiments performed with these temperature-sensitive mutants demonstrated reduced transcription coinciding with the splicing defect at restrictive temperature. Furthermore, RNA Pol II ChIP analysis showed polymerase accumulating over intron-containing genes in both mutants. ChIP analysis using antibodies specific to the phosphorylation status of the CTD (Carboxy Terminal Domain) of RNA Pol II, revealed that the apparently stalled polymerase is hyper-phosphorylated at serine 5. Intriguingly, prp8-R1753K, a ts allele of PRP8, a non-helicase splicing factor mutant also showed reduced nascent RNA synthesis but no RNA Pol II accumulation. To elucidate the reason for the observed RNA Pol II accumulation and to identify a possible splicing-dependent transcriptional checkpoint factor, prp5-1 was investigated further. RNA Pol II ChIP-Seq analysis verified that maximum enrichment genome-wide occurred on introns at restrictive conditions in prp5-1, supporting the earlier observation. Furthermore, the double mutant strain cus2Δprp5-1 abolished the RNA Pol II accumulation observed in prp5-1 at restrictive temperature and restored transcription. Recreating a stalled spliceosome in a U2 mutant strain also showed RNA Pol II accumulation in the presence of Cus2p, as observed in prp5-1. My observations suggest a link between transcription and monitoring of splicing and indicate that Cus2p, a U2 snRNP associated protein, could be a checkpoint factor in transcription prior to pre-spliceosome formation. I speculate that fidelity factors may impose transcriptional checkpoints at different stages of splicing
    corecore